Search results

Filters

  • Journals
  • Keywords
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

Petrographic and physico-chemical analyses of ashes are carried out on a large scale and presented in numerous scientific papers. The mentioned ashes are obtained from filters and electrostatic precipitators mounted in large industrial installations. The large-scale analysis of the ashes obtained directly from grate furnaces or blast furnaces mounted in low-power boilers started with combating smog and low-stack emissions. The collection of ash samples from household furnaces usually involves the analysis of the combustion of waste in low-power boilers. This is justified in the case of old type boilers, which were designed to use virtually any fuel. Currently, new types of boilers, designed to burn dedicated fuels, are offered on the market. The aim is to use only renewable fuels (biomass) or fossil fuels with high quality parameters, which are more environment-friendly, e.g. eco-pea coal, lignite briquettes, or peat briquettes. The authors of the study focused on examining the ash obtained from boilers for burning wood pellets by performing microscopic analysis of residues after biomass combustion. The above mentioned analysis provides a comprehensive information on the efficiency of the combustion process, the content of contaminants remaining in the ash, and the suitability of ash for other applications. The entire process, from the moment of collecting the samples to the execution of the analysis takes up to 12 hours, which ensures a quick decision on furnace adjustment or fuel change. The ash components were determined based on the results obtained by the Fly-Ash Working Group of the International Committee for Coal and Organic Petrology (ICCP). The mentioned classification has been supplemented with new key elements occurring in ashes resulting from the combustion of wood pellets in household boilers. This allowed determining the percentage content of characteristic components in the tested material, which can be used as a specific benchmark when issuing opinions on the quality and efficiency of the boiler and the combusted pellets.
Go to article

Abstract

Wood pellets are classified as a solid biomass type. They are one of the most popular bio-heating fuels used in Europe, especially in the small heating sector, where pellets are burned in low-power domestic boilers. The pellets and automatic pellet-fired heating devices gained popularity due to the increasing air pollution (smog) problem and the low emission limiting campaigns associated with it. Wood pellets are formed as a result of small forestry particles mechanical compression (mainly conifers originated) and they are listed among renewable energy sources. The purpose of the presented studies was to compare the quality of wood pellets used for pellet-fired boilers and to identify, qualitatively and quantitatively, impurities marked in the samples obtained from the domestic market. The application of petrographic analyses, applied so far in relation to fossil fuels, is a presented work innovation for wood pellets. The microscopic analyses were performed on both certified (ENplus/DINplus) and uncertified wood pellets available on the market. Unfortunately, the analysis revealed that the quality requirements were not met, because of the unacceptable contamination presence. The unacceptable organic inclusions in the analyzed samples are fossil coals and their derivatives, coke, and polymeric materials of natural origin. Unacceptable inorganic inclusions determined in the analyzed samples were: glass, slag, rust, pieces of metal, stone powder, plastic, and polymeric materials of inorganic origin.
Go to article

This page uses 'cookies'. Learn more