Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

The goal of the project is to investigate the influence of elastic mechanisms on technical, bipedal locomotion. In particular, the paper presents the parameter identification for a biologically inspired two-legged robot model. The simulation model consists of a rigid body model equipped with rubber straps. The arrangement of the rubber straps is based on the arrangement of certain muscle groups in a human being. The parameters of the elastic elements are identified applying numerical optimisation. Thus two optimisation algorithms are investigated and compared with respect to robustness and computing time. Moreover, different objective functions are defined and discussed. The behaviour of the resulting configuration of the system is explored in terms of biomechanics.
Go to article

Abstract

The optimal design of excitation signal is a procedure of generating an informative input signal to extract the model parameters with maximum pertinence during the identification process. The fractional calculus provides many new possibilities for system modeling based on the definition of a derivative of noninteger-order. A novel optimal input design methodology for fractional-order systems identification is presented in the paper. The Oustaloup recursive approximation (ORA) method is used to obtain the fractional-order differentiation in an integer order state-space representation. Then, the presented methodology is utilized to solve optimal input design problem for fractional-order system identification. The fundamental objective of this approach is to design an input signal that yields maximum information on the value of the fractional-order model parameters to be estimated. The method described in this paper was verified using a numerical example, and the computational results were discussed.
Go to article

Abstract

The paper presents an identification procedure of electromagnetic parameters for an induction motor equivalent circuit including rotor deep bar effect. The presented proce- dure employs information obtained from measurement realised under the load curve test, described in the standard PN-EN 60034-28: 2013. In the article, the selected impedance frequency characteristics of the tested induction machines derived from measurement have been compared with the corresponding characteristics calculated with the use of the adopted equivalent circuit with electromagnetic parameters determined according to the presented procedure. Furthermore, the characteristics computed on the basis of the classical machine T-type equivalent circuit, whose electromagnetic parameters had been identified in line with the chosen methodologies reported in the standards PN-EN 60034-28: 2013 and IEEE Std 112TM-2004, have been included in the comparative analysis as well. Additional verification of correctness of identified electromagnetic parameters has been realised through comparison of the steady-state power factor-slip and torque-slip characteristics determined experimentally and through the machine operation simulations carried out with the use of the considered equivalent circuits. The studies concerning induction motors with two types of rotor construction – a conventional single cage rotor and a solid rotor manufactured from magnetic material – have been presented in the paper.
Go to article

This page uses 'cookies'. Learn more