Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:

Abstract

In this paper, we present a fibre-optic sensor for simultaneous measurement of refractive index and thickness of liquid layers.We designed an experimental low-coherence setup with two broadband light sources and an extrinsic fibre-optic Fabry–Pérot interferometer acting as the sensing head.We examined how the refractive index of a liquid film and its thickness affect spectrum at the output of a fibre-optic interferometer. We performed a series of experiments using two light sources and only one sensing head. The spectra were collected in ranges of 1220#4;1340 nm and 1500#4;1640 nm. The obtained results show that using two spectra recorded simultaneously for two wavelength ranges enables to determine thickness in a range of 50#4;500 #22;m, and refractive index of a liquid film in a range of 1:00#4;1:41 RIU using only one sensing head.
Go to article

Abstract

Progress in UV treatment applications requires new compact and sensor constructions. In the paper a hybrid (organic-inorganic) rare-earth-based polymeric UV sensor construction is proposed. The efficient luminescence of poly(methyl) methacrylate (PMMA) matrix doped by europium was used for testing the optical sensor (optrode) construction. The europium complex assures effective luminescence in the visible range with well determined multi-peak spectrum emission enabling construction of the optrode. The fabricated UV optical fibre sensor was used for determination of Nd:YAG laser intensity measurements at the third harmonic (355 nm) in the radiation power range 5.0-34.0 mW. The multi-peak luminescence spectrum was used for optimization of the measurement formula. The composition of luminescent peak intensity enables to increase the slope of sensitivity up to −2.8 mW-1. The obtained results and advantages of the optical fibre construction enable to apply it in numerous UV detection systems.
Go to article

Abstract

Basic gesture sensors can play a significant role as input units in mobile smart devices. However, they have to handle a wide variety of gestures while preserving the advantages of basic sensors. In this paper a user-determined approach to the design of a sparse optical gesture sensor is proposed. The statistical research on a study group of individuals includes the measurement of user-related parameters like the speed of a performed swipe (dynamic gesture) and the morphology of fingers. The obtained results, as well as other a priori requirements for an optical gesture sensor were further used in the design process. Several properties were examined using simulations or experimental verification. It was shown that the designed optical gesture sensor provides accurate localization of fingers, and recognizes a set of static and dynamic hand gestures using a relatively low level of power consumption.
Go to article

Abstract

A sensing system utilizing a standard optical fiber as a distributed sensor for the detection and localization of mechanical vibrations is presented. Vibrations can be caused by various external factors, like moving people, cars, trains, and other objects producing mechanical vibrations that are sensed by a fiber. In our laboratory we have designed a sensing system based on the Φ-OTDR (phase sensitive Optical Time Domain Reflectometry) using an extremely narrow laser and EDFAs.
Go to article

Abstract

A novel magneto-optical current sensor (MOCS) with two sensing arms is proposed to improve the temperature stability. One of the arms, with a highly stable permanent magnet attached and orthogonal to the other one, is designed to provide a reference that follows the temperature characteristics of the sensing material. By a normalization operation between two arms, the temperature drift is compensated adaptively and a sensing output proportional to the measured current can be reached. A dual-input and dual-output structure is specially designed for the reference sensing arm to demodulate the DC Faraday rotation angle. This scheme compensates simultaneously two main temperature influence factors, the Verdet constant and linear birefringence. Validation tests were carried out and are discussed.
Go to article

Abstract

A method for evaluating the dynamic characteristics of force transducers against small and short-duration impact forces is developed. In this method, a small mass collides with a force transducer and the impact force is measured with high accuracy as the inertial force of the mass. A pneumatic linear bearing is used to achieve linear motion with sufficiently small friction acting on the mass, which is the moving part of the bearing. Small and short-duration impact forces with a maximum impact force of approximately 5 N and minimum half-value width of approximately 1 ms are applied to a force transducer and the impulse responses are evaluated.
Go to article

Abstract

In recent years organic semiconductors have been given attention in the field of active materials for gas sensor applications. In the paper the investigations of the optoelectronic sensor structure of ammonia were presented. The sensor head consists of polyaniline and Nafion layers deposited on the face of the telecommunication optical fiber. The elaborated sensor structure in the form of Fabry-Perot interferometer is of the extremely small dimension – its thickness is of the order of 1 um. Many sensor structures of diffierent combinations of the polyaniline and Nafion layers were constructed and investigated. The optimal solution seems to be the structures with small number of polianiline layers (up to three).
Go to article

This page uses 'cookies'. Learn more