Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 63
items per page: 25 50 75
Sort by:

Abstract

In this paper, the applications of the multivariate data analysis and optimization on vibration signals from compressors have been tested on the assembly line to identify nonconforming products. The multivariate analysis has wide applicability in the optimization of weather forecasting, agricultural experiments, or, as in this case study, in quality control. The techniques of discriminant analysis and linear program were used to solve the problem. The acceleration and velocity signals used in this work were measured in twenty-five rotating compressors, of which eleven were classified as good baseline compressors and fourteen with manufacturing defects by the specialists in the final acoustic test of the production line. The results obtained with the discriminant analysis separated the conforming and nonconforming groups with a significance level of 0.01, which validated the proposed methodology.
Go to article

Abstract

A novel method of active noise control using adaptive radiation sound sources is investigated. A finite element model of a modal enclosed sound field is excited harmonically, representing a noise field in the low-frequency range. The control sources are comprised of elementary dipole sources for which the driving signals are adjusted by an optimization method. Two set-up cases of the proposed compound sources are investigated. The coupling of the control sources with the modal sound field is discussed. The simulated performance of the proposed method is compared with that of a system with distributed simple sources and the results show the effectiveness of the sources with adaptive radiation for active noise control in small enclosures.
Go to article

Abstract

Transportation noise is a main source of noise pollution. It is assumed that it consists of recognizable noise events which come from moving aircrafts, trains and boats. The noise of an isolated sound event is assessed by the sound exposure level, LAE. Much legislation and many regulations and guidelines employ the A-weighted time-average sound level, LAeq,T, with the time interval T of one hour or longer. LAE measurements enable an approximation of LAeq,T. The key point is the uncertainty of this approximation. It has been shown that an increase in the number of LAE categories brings about a decrease in uncertainty. For illustrative purposes, LAE measurements of aircrafts taking off and landing were carried out.
Go to article

Abstract

New Year’s Eve is an example of a situation in which urban residents are exposed to an almost continuous and increased noise level from the impulsive sounds sources – fireworks. This custom has become a source of many controversies related to the protection of human and animal health or environmental pollution. However, current legal regulations only slightly affect the subject of noise of fireworks and its harmfulness. Currently, it does not seem possible to completely prohibit the use of fireworks in urban areas, but this does not mean that it is not possible to decrease the degree of their annoyance. The paper consists the issues of identification, analysis and assessment of impulsive noise of fireworks and acoustic climate during New Year’s Eve. Material presented refers to measurements of time series, frequency spectrum and values of noise parameters of selected fireworks. It was presented, among others, that the measured values exceed the criteria for occupational noise (LCpeak), due to the direct hazard of hearing loss, from 1.8 dB at a distance of 25 m and 6.2 dB at a distance of 15 m. Also this work discusses results of impulsive noise measurements of fireworks recorded during New Year’s Eve in years 2016–2017. Material refers to measurements at three measurement points spread over the city of Kraków. Obtained results were compared with typical noise levels for night time in urban area, indicating also the main sources of annoyance and hazard from this type of noise.
Go to article

Abstract

An innovative system designed for the continuous monitoring of acoustic climate of urban areas was presented in the paper. The assessment of environmental threats is performed using online data, acquired through a grid of engineered monitoring stations collecting comprehensive information about the acoustic climate of urban areas. The grid of proposed devices provides valuable data for the purpose of long and short time acoustic climate analysis. Dynamic estimation of noise source parameters and real measurement results of emission data are utilized to create dynamic noise maps accessible to the general public. This operation is performed through the noise source prediction employing a propagation model being optimized for computer cluster implementation requirements. It enables the system to generate noise maps in a reasonable time and to publish regularly map updates in the Internet. Moreover, the functionality of the system was extended with new techniques for assessing noise-induced harmful effects on the human hearing system. The principle of operation of the dosimeter is based on a modified psychoacoustic model of hearing and on the results of research performed with participation of volunteers concerning the impact of noise on hearing. The primary function of the dosimeter is to estimate, in real time, auditory effects which are caused by exposure to noise. The results of measurements and simulations performed by the system prototype are depicted and analyzed. Several cases of long-term and short-term measurements of noise originating from various sources were considered in detail. The presented outcomes of predicted degree of the hearing threshold shift induced during the noise exposure can increase the awareness of harmfulness of excessive sound levels.
Go to article

Abstract

In the paper a new method, called the Noise Scattering Pattern (NSP) method, for RTS noise identification in a noise signal is presented. Examples of patterns of the NSP method are included.
Go to article

Abstract

Studies of electrical properties, including noise properties, of thick-film resistors prepared from various resistive and conductive materials on LTCC substrates have been described. Experiments have been carried out in the temperature range from 300 K up to 650 K using two methods, i.e. measuring (i) spectra of voltage fluctuations observed on the studied samples and (ii) the current noise index by a standard meter, both at constant temperature and during a temperature sweep with a slow rate. The 1/f noise component caused by resistance fluctuations occurred to be dominant in the entire range of temperature. The dependence of the noise intensity on temperature revealed that a temperature change from 300 K to 650 K causes a rise in magnitude of the noise intensity approximately one order of magnitude. Using the experimental data, the parameters describing noise properties of the used materials have been calculated and compared to the properties of other previously studied thick-film materials.
Go to article

Abstract

This paper presents selected applications of the miniaturized hydraulic components offered by specialized manufacturers and some results of the authors' own research on microflows, including results of hydraulic microfeeder vibration measurements performed by the touchless method using a laser vibrometer. The latter was chosen in order to eliminate measuring instrument influence on the investigated microhydraulic object. Special attention was focused on acoustic problems: noise sources and methods of noise reduction.
Go to article

Abstract

The tests reported in this paper were carried out to evaluate the exposure of soldiers to noise at operator and control positions during military field exercises. The tests were conducted during firing from a T-72 tank, a BWP-1 Infantry Fighting Vehicle, antitank guided missiles, a ZU-23-2K anti-aircraft gun, and a 2S1 GOZDZIK howitzer. The evaluation of noise exposure showed that the limit values of sound pressure level, referred to by both Polish occupational noise protection standards and the Pfander and Dancer hearing damage risk criteria developed for military applications, were repeatedly exceeded at the tested positions. Despite of the use of tank crew headgear, the exposure limit values of sound pressure level were exceeded for the crew members of the T-72 tank, the BWP-1 infantry fighting vehicle, and the 2S1 GOZDZIK howitzer. The results show that exposure of soldiers to noise during military field exercises is a potentially high hearing risk factor.
Go to article

Abstract

Graphene is a very promising material for potential applications in many fields. Since manufacturing technologies of graphene are still at the developing stage, low-frequency noise measurements as a tool for evaluating their quality is proposed. In this work, noise properties of polymer thick-film resistors with graphene nano-platelets as a functional phase are reported. The measurements were carried out in room temperature. 1/f noise caused by resistance fluctuations has been found to be the main component in the specimens. The parameter values describing noise intensity of the polymer thick-film specimens have been calculated and compared with the values obtained for other thick-film resistors and layers used in microelectronics. The studied polymer thick-film specimens exhibit rather poor noise properties, especially for the layers with a low content of the functional phase.
Go to article

Abstract

The course of design of an optocoupler's PSpice macromodel including noise sources is described. The PSpice macromodel is proposed for the low frequency range. The PSpice model of a MOSFET transistor was applied as the noise source type 1/fα in an optocoupler PSpice macromodel. In the enhanced macromodel the value of an exponent α can be changed in the range of 0.8-1.25.
Go to article

Abstract

The main objective of the research presented in this paper is to enhance driver-passengers comfort of a vehicle that in turn leads to better vehicle safety and stability. The focus was put on studying the interior vibration and noise contributions originated from tire-road and engine-transmission subsystems, due to their significant impact on the dynamic performance of the vehicle. The noise and vibration measurements were recorded at the driver’s head position and on the driver legs room. Furthermore, the influence of different tire types and road surface textures on the vehicle interior noise and vibration were considered. The results indicate that the widely used conventional engine mounts and tires in commercial vehicles cannot fulfill the conflicting requirements for the best isolation concerning both road surface and engine-transmission induced excitations. The values of driver’s head position sound pressure level and floor vibration acceleration broadband averages originate for engine-transmission are lower than that for tire-road interaction. Furthermore, the values of RMS, crest factor, kurtosis and IRI for the vehicle waveform were estimated for vehicle speeds, tire types and road surface textures. Moreover, the percentage contribution for both interior noise and vibration originated from tire-road interaction is higher than the one from vehicle engine-transmission system in all the vehicle speed range, tire type and road surface texture considered.
Go to article

Abstract

The paper shows a study on the relationship between noise measures and sound quality (SQ) features that are related to annoyance caused by the traffic noise. First, a methodology to perform analyses related to the traffic noise annoyance is described including references to parameters of the assessment of road noise sources. Next, the measurement setup, location and results are presented along with the derived sound quality features. Then, statistical analyses are performed to compare the measurement results and sound quality features. The included conclusions are focused on showing that the obtained loudness values, regardless of the used system, are similar in a statistical sense. Contrarily, sharpness, roughness and fluctuation strength values differ for the tools employed.
Go to article

Abstract

A hybrid artificial boundary condition (HABC) that combines the volume-based acoustic damping layer (ADL) and the local face-based characteristic boundary condition (CBC) is presented to enhance the absorption of acoustic waves near the computational boundaries. This method is applied to the prediction of aerodynamic noise from a circular cylinder immersed in uniform compressible viscous flow. Different ADLs are designed to assess their effectiveness whereby the effect of the mesh-stretch direction on wave absorption in the ADL is analysed. Large eddy simulation (LES) and FW-H acoustic analogy method are implemented to predict the far-field noise, and the sensitivities of each approach to the HABC are compared. In the LES computed propagation field of the fluctuation pressure and the frequency-domain results, the spurious reflections at edges are found to be significantly eliminated by the HABC through the effective dissipation of incident waves along the wave-front direction in the ADL. Thereby, the LES results are found to be in a good agreement with the acoustic pressure predicted using FW-H method, which is observed to be just affected slightly by reflected waves.
Go to article

Abstract

Natural sounds are essential elements for ecosystems, and therefore necessary for many ecological functions, forming what is called “natural soundscapes”. The Natural Reserve Laguna del Portil (NRLP), located in the southwest of the Iberian Peninsula, is an ecosystem which was declared by Spanish authorities as Protected Natural Reserve. In the south area of the NRLP, there is a regional road with high traffic intensity, which affects the soundscapes of this natural reserve. In this study, the road potential noise impact on the natural sounds of the NLRP is analysed. This analysis was done both in winter and summer, and also using two independent methods: 1) spatial sampling measures in 43 different points of the NRL; and 2) noise mapping using noise levels prediction software. From the comparison of the results of both methods and seasons the following conclusions were reached: 1) an approach to the natural soundscape of NRLP both in winter and summer, 2) the acoustic impact of the road on the NRLP, and 3) the variation of the traffic noise depending on the distance to the road, and its seasonal variation. This study could be to improve the management of the NRLP and to help to preserve the natural soundscape of the reserve.
Go to article

Abstract

A new method of noise generation based on software implementation of a 7-bit LFSR based on a common polynomial PRBS7 using microcontrollers equipped with internal ADCs and DACs and a microcontroller noise generator structure are proposed in the paper. Two software applications implementing the method: written in ANSI C and based on the LUT technique and written in AVR Assembler are also proposed. In the method the ADC results are used to reseed the LFSR after its each full work cycle, what improves randomness of generated data, which results in a greater similarity of the generated random signal to white noise, what was confirmed by the results of experimental research. The noise generator uses only the internal devices of the microcontroller, hence the proposed solution does not introduce hardware redundancy to the system.
Go to article

Abstract

The paper deals with the preparation and measurement of an experimental polymer graphite cathode that seems to be a promising and cheap source of electrons utilizing cold field-emission in high- and ultra-high vacuum. Polymer graphite seems to be a proper material as it contains a large amount of hybridized carbon with a low degree of surface oxidation and silicon monoxide (SiO). Within the frame of this work, a special experimental method of tip preparation has been designed and tuned. This method is based on ion milling inside a dual-beam electron microscope enabling to obtain ultra-sharp tips of a diameter smaller than 100 nm with a predefined opening angle. The charge transport within experimental samples is evaluated based on results provided by the noise spectroscopy of the total emission current in the time and frequency domains.
Go to article

Abstract

A plenum window with incorporation of Helmholtz resonators in between two glass panes was tested in a reverberation room. The effects of jagged flap on reducing strength of diffracted sound was also investigated in the present studies where white, traffic and construction noises were examined during each set of experiment. When the noise source was located at the central line of the plenum window, the plenum window with Helmholtz resonators was able to mitigate 8.5 dBA, 8.9 dBA and 8.2 dBA of white, traffic and construction noises, respectively, compared with the case of without window. These amounts of noises that attenuated by the plenum window were slightly higher than the case where noise source was diverged 30º away from the plenum window. The effects of jagged flaps on the acoustical performance of the plenum window were negligible. The Helmholtz resonators had the best performance in the frequency region between 900 Hz to 1300 Hz where in this frequency range, the plenum window with Helmholtz resonators was able to attenuate additional 1.7 dBA, 1.9 dBA and 1.6 dBA of white, traffic and construction noises, respectively, compared with the case of without resonators.
Go to article

Abstract

A real narrowband noise signal representation in the form of an analytical signal in the Hilbert space is presented in the paper. This analytical signal is illustrated in a variable complex plane as a mark with defined amplitude, phase, pulsation and instantaneous frequency. A block diagram of a broadband product detector in a quadrature system is presented. Measurement results of an autocorrelation function of a noise signal are shown and the application of such solution in a noise radar for precise determination of distance changes as well as velocities of these changes are also presented. Conclusions and future plans for applications of the presented detection technique in broadband noise radars bring the paper to an end.
Go to article

Abstract

An analytical expression for the standard deviation of Total Harmonic Distortion (THD) estimation is derived. It applies to the case where the estimator uses sine fitting. It is shown that, in common circumstances, it is inversely proportional to the actual value of THD, the signal-to-noise ratio and the square root of the number of samples. The proposed expression is validated both with numerical simulations and an experimental setup using a Monte Carlo procedure.
Go to article

Abstract

A developed method and measurement setup for measurement of noise generated in a supercapacitor is presented. The requirements for noise data recording are considered and correlated with working modes of supercapacitors. An example of results of low-frequency noise measurements in commercially available supercapacitors are presented. The ability of flicker noise measurements suggests that they can be used to assess quality of tested supercapacitors.
Go to article

Abstract

Raman spectrometers are devices which enable fast and non-contact identification of examined chemicals. These devices utilize the Raman phenomenon to identify unknown and often illicit chemicals (e.g. drugs, explosives) without the necessity of their preparation. Now, Raman devices can be portable and therefore can be more widely used to improve security at public places. Unfortunately, Raman spectra measurements is a challenge due to noise and interferences present outside the laboratories. The design of a portable Raman spectrometer developed at the Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology is presented. The paper outlines sources of interferences present in Raman spectra measurements and signal processing techniques required to reduce their influence (e.g. background removal, spectra smoothing). Finally, the selected algorithms for automated chemicals classification are presented. The algorithms compare the measured Raman spectra with a reference spectra library to identify the sample. Detection efficiency of these algorithms is discussed and directions of further research are outlined.
Go to article

Abstract

Problems associated with designing silencers are presented. Results of direct tests of silencers for cooperation with systems of axial fans, as well as results of numerical tests of a two stage acoustic silencer, are given. The numerical tests enabled determining the distribution of acoustic field inside the silencer and in the surrounding area. In those tests A sound insertion losses for different variants of installation inside the silencer, as well as for two different types of absorbing material used to fill the silencer walls, were determined. Impact of design features of silencers on effectiveness of noise reduction is described. Also, a technical sketch of a universal silencer with significant noise reduction (DipS = 39:1 dB) which can be successfully used in many ventilation systems is presented
Go to article

Abstract

This paper proposes an active noise control (ANC) application to attenuate siren noise for the patient lying inside ambulance with no sound proofing. From the point of cost effectiveness, a local ANC system based on feedforward scheme is considered. Further, to handle the limitation of limited Zone of Silence (ZoS), the ANC based on virtual sensing is explored. The simulations are done in MATLAB for the recorded ambulance siren noise signal. The results indicate that ANC can be an effective solution for creating a silent environment for the patient.
Go to article

This page uses 'cookies'. Learn more