Search results

Filters

  • Journals
  • Date

Search results

Number of results: 8
items per page: 25 50 75
Sort by:

Abstract

Nano-sized yttria (Y2O3) powders were synthesized by a polymer solution route using polyvinyl alcohol (PVA) as an organic carrier. The PVA polymer affected the dispersion of yttrium ions in precursor sol. In this study, three kinds of PVA polymer (different molecular weight) were applied for synthesis of yttria powder. The PVA type as well as calcination temperature had a strongly influence on the particle morphology. Single crystal nano wire particles were observed at the temperature of polymer burn out range and the size was dependent on the PVA type. The stable, fully crystallized yttria powder was obtained through the calcination at 800°C for 1 h. The yttria powder prepared with the high weight PVA (MW: 153,000) revealed a particle size of 30 nm with a surface area of 18.8 m2/g.
Go to article

Abstract

The present study, aims to investigate the effect of minor Zr and Nb alloying on soft magnetic and electrical properties of Fe86(ZrxNb1-x)7B6Cu1 (x = 1, 0.75, 0.5, 0.25) alloys. The investigated alloys were prepared through the melt spinning process. Within the examined compositional range (Nb up to 5.25at%, respectively), the soft magnetic properties and electrical resistivity of the alloys continuously increase with increasing Nb content. However increasing the Nb content further decreases such properties. We could confirm the influence of ratio of Zr and Nb on grain growth and crystallization fraction during crystallization by using the soft magnetic properties and electrical properties.
Go to article

Abstract

This paper reviews research at the Institute of Materials Science and Engineering, Poznań University of Technology, on the synthesis of nanocrystalline hydride electrode materials. Nanocrystalline materials have been synthesized by mechanical alloying (MA) followed by annealing. Examples of the mate2-, LaNi5 and Mg2Ni-type phases. Details on the process used and the enhancement of properties due to the nanoscale structures are presented. The synthesized alloys were used as negative electrode materials for Ni-MH battery. The properties of hydrogen host materials can be modi?ed substantially by alloying to obtain the desired storage characteristics. For example, it was found that the respective replacement of Fe in TiFe by Ni and/or by Cr, Co, Mo improved not only the discharge capacity but also the cycle life of these electrodes. The hydrogen storage properties of nanocrystalline ZrV2- and LaNi5-type powders prepared by mechanical alloying and annealing show no big di?erence with those of melt casting (polycrystalline) alloys. On the other hand, a partial substitution of Mg by Mn orAl in Mg2Ni alloy leads to an increase in discharge capacity, at room temperature. Furthermore, the e?ect of the nickel and graphite coating on the structure of some nanocrystalline alloys and the electrodes characteristics were investigated. In the case of Mg2Ni-type alloy mechanical coating with graphite e?ectively reduced the degradation rate of the studied electrode materials. The combination of a nanocrystalline TiFe-, ZrV2- and LaNi5-type hydride electrodes and a nickel positive electrode to form a Ni-MH battery, has been successful.
Go to article

Abstract

The influence of the electrode geometry on the microstructure and corrosion behaviour of Co-Mo nano-crystalline coatings elaborated by electrodeposition is studied. The corrosion behaviour was determined in the Ringer’s solution at 25°C. Electrodeposition mechanisms are also discussed as a function of the electrode geometry. The electrode geometry was found to affect the growth rate and, under certain conditions, the microstructure (existence of channels and pores). It does not have influence on the corrosion behaviour.
Go to article

Abstract

The influence on the corrosion behaviour of Co-Mo nano-crystalline coatings of dissolved oxygen is studied in the Ringer’s solution and artificial saliva at 25°C. This was done by means of potentiodynamic tests and surface observations. It was shown that dissolved oxygen has no influence on passivity, oxidation of the coating and selective dissolution of cobalt. By contrast, dissolved oxygen affects corrosion. General corrosion was observed in the Ringer’s solution whereas pitting corrosion was found in artificial saliva.
Go to article

Abstract

A high-temperature piezo-resistive nano-crystalline diamond strain sensor and wireless powering are presented in this paper. High-temperature sensors and electronic devices are required in harsh environments where the use of conventional electronic circuits is impractical or impossible. Piezo-resistive sensors based on nano-crystalline diamond layers were successfully designed, fabricated and tested. The fabricated sensors are able to operate at temperatures of up to 250°C with a reasonable sensitivity. The basic principles and applicability of wireless powering using the near magnetic field are also presented. The system is intended mainly for circuits demanding energy consumption, such as resistive sensors or devices that consist of discrete components. The paper is focused on the practical aspect and implementation of the wireless powering. The presented equations enable to fit the frequency to the optimal range and to maximize the energy and voltage transfer with respect to the coils’ properties, expected load and given geometry. The developed system uses both high-temperature active devices based on CMOS-SOI technology and strain sensors which can be wirelessly powered from a distance of up to several centimetres with the power consumption reaching hundreds of milliwatts at 200°C. The theoretical calculations are based on the general circuit theory and were performed in the software package Maple. The results were simulated in the Spice software and verified on a real sample of the measuring probe.
Go to article

Abstract

A nanocrystalline Ti alloy powder was fabricated using cryomilling. The grain size and lattice strain evolution during cryomilling were quantitatively analyzed using X-ray diffraction (XRD) based on the Scherrer equation, Williamson-Hall (W-H) plotting method, and size-strain (S-S) method assuming uniform deformation. Other physical parameters including stress and strain have been calculated. The average crystallite size and the lattice strain evaluated from XRD analysis are in good agreement with the result of transmission electron microscopy (TEM).
Go to article

Abstract

A nanocrystalline Ti alloy powder was fabricated using cryomilling. The grain size and lattice strain evolution during cryomilling were quantitatively analyzed using X-ray diffraction (XRD) based on the Scherrer equation, Williamson-Hall (W-H) plotting method, and size-strain (S-S) method assuming uniform deformation. Other physical parameters including stress and strain have been calculated. The average crystallite size and the lattice strain evaluated from XRD analysis are in good agreement with the result of transmission electron microscopy (TEM).
Go to article

This page uses 'cookies'. Learn more