Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

This paper investigates the application of a novel Model Predictive Control structure for the drive system with an induction motor. The proposed controller has a cascade-free structure that consists of a vector of electromagnetics (torque, flux) and mechanical (speed) states of the system. The long-horizon version of the MPC is investigated in the paper. In order to reduce the computational complexity of the algorithm, an explicit version is applied. The influence of different factors (length of the control and predictive horizon, values of weights) on the performance of the drive system is investigated. The effectiveness of the proposed approach is validated by some experimental tests.
Go to article

Abstract

This paper proposes a practical tuning of closed loops with model based predictive control. The data assumed to be known from the process is the result of the bump test commonly applied in industry and known in engineering as step response data. A simplified context is assumed such that no prior know-how is required from the plant operator. The relevance of this assumption is very realistic in the context of first time users, both for industrial operators and as educational competence of first hand student training. A first order plus dead time is approximated and the controller parameters immediately follow by heuristic rules. Analysis has been performed in simulation on representative dynamics with guidelines for the various types of processes. Three single-input-single-output experimental setups have been used with no expert users available in different locations – both educational and industrial – these setups are representative for practical cases: a variable time delay dominant system, a non-minimum phase system and an open loop unstable system. Furthermore, in a multivariable control context, a train of separation columns has been tested for control in simulation, followed by experimental tests on a laboratory system with similar dynamics, i.e. a sextuple coupled water tank system. The results indicate the proposed methodology is suitable for hands-on tuning of predictive control loops with some limitations on performance and multivariable process control.
Go to article

This page uses 'cookies'. Learn more