Search results

Filters

  • Journals
  • Date

Search results

Number of results: 8
items per page: 25 50 75
Sort by:

Abstract

In this paper an alternative procedure to vibro-acoustics study of beam-type structures is presented. With this procedure, it is possible to determine the resonant modes, the bending wave propagation velocity through the study of the radiated acoustic field and their temporal evolution in the frequency range selected. As regards the purely experimental aspect, it is worth noting that the exciter device is an actuator similar to is the one employed in distributed modes loudspeakers; the test signal used is a pseudo random sequence, in particular, an MLS (Maximum Length Sequence), facilitates post processing. The study case was applied to two beam-type structures made of a sandstone material called Bateig. The experimental results of the modal response and the bending propagation velocity are compared with well-established analytical solution: Euler-Bernoulli and Timoshenko models, and numerical models: Finite Element Method – FEM, showing a good agreement.
Go to article

Abstract

The application of modern scientific methods and measuring techniques can extend the empirical knowledge used for centuries by violinmakers for making and adjusting the sound of violins, violas, and cellos. Accessories such as strings and tailpieces have been studied recently with respect to style and historical coherence, after having been somehow neglected by researchers in the past. These fittings have played an important part in the history of these instruments, but have largely disappeared as they have been modernised. However, the mechanics of these accessories contribute significantly to sound production in ways that have changed over time with different musical aesthetics and in different technical contexts. There is a need to further elucidate the function and musical contribution of strings and tailpieces. With this research we are trying to understand the modifications of the cello's sound as a consequence of tailpiece characteristics (shape of the tailpiece and types of attachments). Modal analysis was used to first investigate the vibration modes of the tailpiece when mounted on a non-reactive rig and then when mounted on a real cello where it can interact with the modes of the instrument's corpus. A preliminary study of the effect of the tailpiece cord length will be presented.
Go to article

Abstract

Experimental modal analysis of a violin with three different tensions of a bass bar has been performed. The bass bar tension is the only intentionally introduced modification of the instrument. The aim of the study was to find differences and similarities between top plate modal parameters determined by a bass bar perfectly fitting the shape of the top plate, the bass bar with a tension usually applied by luthiers (normal), and the tension higher than the normal value. In the modal analysis four signature modes are taken into account. Bass bar tension does not change the sequence of mode shapes. Changes in modal damping are insignificant. An increase in bass bar tension causes an increase in modal frequencies A0 and B(1+) and does not change the frequencies of modes CBR and B(1-).
Go to article

Abstract

One-dimensional experimental modal analysis of an unvarnished trapezoidal violin built after the description of F. Savart and an anonymous trapezoidal violin on display in the Music Instrument Museum of Brussels is described. The analysis has revealed ten prominent modes. A mode that may potentially play a role of the “tonal barometer” of the instrument is pointed out. The mode shapes are symmetric and of high amplitude, due to the construction of the instrument. Subjective evaluation of the sound quality demonstrated no pronounced difference between the trapezoidal violin and normal violin.
Go to article

Abstract

This paper is concerned with the 1st stage of HP rotor blade assembly steam turbine TK 120. The methodology was focused on the selection of mechanical properties and the way of the rotor disc modeling and estimating the degree of damage caused by creep. Then the dynamic interference between the frequencies of excitation and the natural frequencies was assessed. Static calculations were performed for the cyclic sectors consisting of the disc, disc blades, spacers and shrouding, including loads as temperature, mass forces from the angular velocity and the pressure on the blades. Then, the creep analysis using a Norton’s model and the modal analysis were performed. Static analysis gave information concerning the distributions of displacements, stress and strain components. In the creep analysis, the creep displacements and stress relaxation versus time were determined and the estimated degree of damage caused by creep was evaluated at each part of the rotor disc. In the modal analysis, the natural frequencies and modes of vibrations corresponding to the nodal diameters were found. The results of modal analysis were shown in the SAFE graph. Numerical calculations have shown that the rotor disc was a well-designed structure and did not reveal any dynamic interference.
Go to article

Abstract

Two violins were investigated. The only intentionally introduced difference between them was the type of varnish. One of the instruments was covered with a spirit varnish, the other was oil varnished. Experimental modal analysis was done for unvarnished/varnished violins and a questionnaire inquiry on the instrument’s sound quality was performed. The aim of both examinations was to find differences and similarities between the two instruments in the objective (modal parameters) and subjective domain (subjective evaluation of sound quality). In the modal analysis, three strongly radiating signature modes were taken into account. Varnishing did not change the sequence of mode shapes. Modal frequencies A0 and B(1+) were not changed by oil varnishing compared to the unvarnished condition. For the oil varnished instrument, the frequency of mode B(1+) was lower than that of the same mode of the spirit varnished instrument. Our two violins were not excellent instruments, but before varnishing they were practically identical. However, after varnishing it appeared that the oil-varnished violin was better than the spirit-varnished instrument. Therefore, it can be assumed with a fairly high probability that also in general, the oil-varnished violins sound somewhat better than initially identical spirit-varnished ones.
Go to article

Abstract

It is assumed in the paper that the signals in the enclosure in a transient period are similar to a noise induced by vehicles, tracks, cars, etc. passing by. The components of such signals usually points out specific dynamic processes running during the observation or measurements. In order to choose the best method of analysis of these phenomena, an acoustic field in a closed space with a sound source inside is created. Acoustic modes of this space influence the sound field. Analytically, the modal analyses describe the above mentioned phenomena. The experimental measurements were conducted in the room that might comprise the closed space with known boundary conditions and the sound source Brüel & Kjær Omni-directional type 4292 inside. To record sound signals before the field's steady state was reached, the microphone type 4349 and the 4-channel frontend 3590 had been used. The obtained signals have been analysed by using two approaches, i.e. Fourier and the wavelet analysis, with the emphasis on their efficiency and the capability to recognise important details of the signal. The results obtained for the enclosure might lead to the formulation of a methodology for an extended investigation of a rail track or vehicles dynamics.
Go to article

Abstract

Two vibrating circular membranes radiate acoustic waves into the region bounded by three infinite baffles arranged perpendicularly to one another. The Neumann boundary value problem has been investigated in the case when both sources are embedded in the same baffle. The analyzed processes are time harmonic. The membranes vibrate asymmetrically. External excitations of different surface distributions and different phases have been applied to the sound sources’ surfaces. The influence of the radiated acoustic waves on the membranes’ vibrations has been included. The acoustic power of the sound sources system has been calculated by using a complete eigenfunctions system.
Go to article

This page uses 'cookies'. Learn more