Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 11
items per page: 25 50 75
Sort by:

Abstract

The paper presents the experimental study of a novel unsteady-statemembrane gas separation approach for recovery of a slow-permeant component in the membrane module with periodical retentate withdrawals. The case study consisted in the separation of binary test mixtures based on the fast-permeant main component (N2O, C2H2) and the slow-permeant impurity (1%vol. of N2) using a radial countercurrent membrane module. The novel semi-batch withdrawal technique was shown to intensify the separation process and provide up to 40% increase in separation efficiency compared to a steady-state operation of the same productivity.
Go to article

Abstract

Integrated gasification combined cycle systems (IGCC) are becoming more popular because of the characteristics, by which they are characterized, including low pollutants emissions, relatively high efficiency of electricity production and the ability to integrate the installation of carbon capture and storage (CCS). Currently, the most frequently used CO2 capture technology in IGCC systems is based on the absorption process. This method causes a significant increase of the internal load and decreases the efficiency of the entire system. It is therefore necessary to look for new methods of carbon dioxide capture. The authors of the present paper propose the use of membrane separation. The paper reviews available membranes for use in IGCC systems, indicates, inter alia, possible places of their implementation in the system and the required operation parameters. Attention is drawn to the most important parameters of membranes (among other selectivity and permeability) influencing the cost and performance of the whole installation. Numerical model of a membrane was used, among others, to analyze the influence of the basic parameters of the selected membranes on the purity and recovery ratio of the obtained permeate, as well as to determine the energetic cost of the use of membranes for the CO2 separation in IGCC systems. The calculations were made within the environment of the commercial package Aspen Plus. For the calculations both, membranes selective for carbon dioxide and membranes selective for hydrogen were used. Properly selected pressure before and after membrane module allowed for minimization of energy input on CCS installation assuring high purity and recovery ratio of separated gas.
Go to article

Abstract

Comparative calculations with a mathematical model designed by the authors, which takes into consideration energy transfer from gas flowing through a given channel to gas which penetrates this channel from an adjacent channel, as well as a model which omits this phenomenon, respectively, were made for the process of separating gas mixtures carried out with an inert sweep gas in the fourend capillary membrane module. Calculations were made for the process of biogas separation using a PMSP polymer membrane, relative to helium as the sweep gas. It was demonstrated that omitting the energy transfer in the mathematical model might lead to obtaining results which indicate that the capacity of the process expressed by the value of feed flux subjected to separation is by several percent higher than in reality.
Go to article

Abstract

In this paper a 600 MW oxy-type coal unit with a pulverized bed boiler and a membrane-cryogenic oxygen separator and carbon capture installation was analyzed. A membrane-cryogenic oxygen separation installation consists of a membrane module and two cryogenic distillation columns. In this system oxygen is produced with the purity equal to 95%. Installation of carbon capture was based on the physical separation method and allows to reduce the CO2emission by 90%. In this work the influence of the main parameter of the membrane process – the selectivity coefficient, on the efficiency of the coal unit was presented. The economic analysis with the use of the break-even point method was carried out. The economic calculations were realized in view of the break-even price of electricity depending on a coal unit availability.
Go to article

Abstract

In this paper the results of the thermodynamic analysis of the oxy-combustion type pulverized bed boiler integrated with a hybrid, membrane- cryogenic oxygen separation installation are presented. For the calculations a 600 MW boiler with live steam parameters at 31.1 MPa /654.9 oC and reheated steam at 6.15 MPa/672.4 oC was chosen. In this paper the hybrid membrane-cryogenic technology as oxygen production unit for pulverized bed boiler was proposed. Such an installation consists of a membrane module and two cryogenic distillation columns. Models of these installations were built in the Aspen software. The energy intensity of the oxygen production process in the hybrid system was compared with the cryogenic technology. The analysis of the influence of membrane surface area on the energy intensity of the process of air separation as well as the influence of oxygen concentration at the inlet to the cryogenic installation on the energy intensity of a hybrid unit was performed.
Go to article

Abstract

A novel absorbing pervaporation hybrid technique has been evaluated experimentally for the recovery of ammonia from the gas mixture in a recycle loop of synthesis plants. This process of hybridization brings together the combination of energy-efficient membrane gas separation based on poly(dimethylsiloxane) poly(diphenylsilsesquioxane) with a high selective sorption technique where a water solution with polyethylene glycol 400 (PEG-400) was used as the liquid absorbent. Process efficiency was studied using the pure and mixed gases. The influence of PEG-400 content in aqueous solutions on process selectivity and separation efficiency was studied. The ammonia recovery efficiency evaluation of an absorbing pervaporation technique was performed and compared with the conventional membrane gas separation. It was shown that the absorbing pervaporation technique outperforms the conventional membrane method in the whole range of productivity, producing the ammonia with a purity of 99.93 vol.% using the PEG 80 wt.% solution. The proposed method may be considered as an attractive solution in the optimization of the Haber process.
Go to article

Abstract

Results are presented concerning the separation of the mixtures of carbon dioxide, nitrogen and oxygen in membrane modules with modified polysulphone or polyimide as active layers. The feed gas was a mixture with composition corresponding to that of a stream leaving stage 1 of a hybrid adsorptivemembrane process for the removal of CO2 from dry flue gas. In gas streams containing 70 vol.% of CO2, O2 content was varied between 0 and 5 vol.%. It is found that the presence of oxygen in the feed gas lowers the purity of the product CO2 in all the modules studied, while the recovery depends on the module. In the PRISM module (Air Products) an increase in O2 feed concentration, for the maximum permeate purity, led to a rise in CO2 recovery, whereas for the UBE modules the recovery did not change.
Go to article

Abstract

The influence of ion implantation on the structure and properties of polymers is a very complex issue. Many physical and chemical processes taking place during ion bombardment must be taken into consideration. The complexity of the process may exert both positive and negative influence on the structure of the material. The goal of this paper is to investigate the influence of H+, He+ and Ar+ ion implantation on the properties of polypropylene membranes used in filtration processes and in consequence on fouling phenomena. It has appeared that the ion bombardment caused the chemical modification of membranes which has led to decrease of hydrophobicity. The increase of protein adsorption on membrane surface has also been observed.
Go to article

Abstract

Among the technologies which allow to reduce greenhouse gas emissions, mainly of carbon dioxide, special attention deserves the idea of 'zero-emission' technology based on boilers working in oxy-combustion technology. In the paper a thermodynamic analysis of supercritical power plant fed by lignite was made. Power plant consists of: 600 MW steam power unit with live steam parameters of 650°C/30 MPa and reheated steam parameters of 670°C/6 MPa; circulating fluidized bed boiler working in oxy-combustion technology; air separation unit and installation of the carbon dioxide compression. Air separation unit is based on high temperature membrane working in three-end technology. Models of steam cycle, circulation fluidized bed boiler, air separation unit and carbon capture installation were made using commercial software. After integration of these models the net electricity generation efficiency as a function of the degree of oxygen recovery in high temperature membrane was analyzed.
Go to article

Abstract

The knowledge about membrane contactors is growing rapidly but is still insufficient for a reliable designing. This paper presents a new type of membrane contactors that are integrated with one of the following ways of separation by using absorbents, micelles, flocculants, functionalized polymers, molecular imprints, or other methods that are based on aggregation. The article discusses methods for designing multi-stage cascade, usually counter-current. At every stage of this cascade, relevant aggregates are retained by the membrane, while the permeate passes freely through membrane. The process takes place in the membrane boundary layer with a local cross-flow of the permeate and the retentate. So the whole system can be called a cross-counter-current. The process kinetics, k, must be coordinated with the permeate flux, J, and the rate of surface renewal of the sorbent on the membrane surface, s. This can be done by using ordinary back-flushing or relevant hydrodynamic method of sweeping, such as: turbulences, shear stresses or lifting forces. A surface renewal model has been applied to adjust the optimal process conditions to sorbent kinetics. The experimental results confirmed the correctness of the model and its suitability for design of the new type of contactors.
Go to article

Abstract

In this paper an air separation unit was analyzed. The unit consisted of: an ionic transport membrane contained in a four-end type module, an air compressor, an expander fed by gas that remains after oxygen separation and heat exchangers which heat the air and recirculated flue gas to the membrane operating temperature (850 °C). The air separation unit works in a power plant with electrical power equal to 600 MW. This power plant additionally consists of: an oxy-type pulverized-fuel boiler, a steam turbine unit and a carbon dioxide capture unit. Life steam parameters are 30 MPa/650 °C and reheated steam parameters are 6 MPa/670 °C. The listed units were analyzed. For constant electrical power of the power plant technical parameters of the air separation unit for two oxygen recovery rate (65% and 95%) were determined. One of such parameters is ionic membrane surface area. In this paper the formulated equation is presented. The remaining technical parameters of the air separation unit are, among others: heat exchange surface area, power of the air compressor, power of the expander and auxiliary power. Using the listed quantities, the economic parameters, such as costs of air separation unit and of individual components were determined. These quantities allowed to determine investment costs of construction of the air separation unit. In addition, they were compared with investment costs for the entire oxy-type power plant.
Go to article

This page uses 'cookies'. Learn more