Search results


  • Journals

Search results

Number of results: 1
items per page: 25 50 75
Sort by:


Passive source localization in shallow water has always been an important and challenging problem. Implementing scientific research, surveying, and monitoring using a short, less than ten meter long, horizontal linear array has received considerable attention in the recent years. The short array can be conveniently placed on autonomous underwater vehicles and deployed for adaptive spatial sampling. However, it is usually difficult to obtain a sufficient spatial gain for localizing long-range sources due to its limited physical size. To address this problem, a localization approach is proposed which is based on matched-field processing of the likelihood of the passive source localization in shallow water, as well as inter-position processing for the improved localization performance and the enhanced stability of the estimation process. The ability of the proposed approach is examined through the two-dimensional synthetic test cases which involves ocean environmental mismatch and position errors of the short array. The presented results illustrate the localization performance for various source locations at different signal- to-noise ratios and demonstrate the build up over time of the positional parameters of the estimated source as the short array moves at a low speed along a straight line at a certain depth.
Go to article

This page uses 'cookies'. Learn more