Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 13
items per page: 25 50 75
Sort by:

Abstract

The mathematical model and numerical simulations of the solidification of a cylindrical shaped casting, which take into account the process of filling the mould cavity by liquid metal and feeding the casting through the riser during its solidification, are presented in the paper. Mutual dependence of thermal and flow phenomena were taken into account because have an essential influence on solidification process. The effect of the riser shape on the effectiveness of feeding of the solidifying casting was determined. In order to obtain the casting without shrinkage defects, an appropriate selection of riser shape was made, which is important for foundry practice. Numerical calculations of the solidification process of system consisting of the casting and the conical or cylindrical riser were carried out. The velocity fields have been obtained from the solution of momentum equations and continuity equation, while temperature fields from solving the equation of heat conductivity containing the convection term. Changes in thermo-physical parameters as a function of temperature were considered. The finite element method (FEM) was used to solve the problem.
Go to article

Abstract

The paper presents results of experimental investigation of microchannel boiling flow which was controlled by dielectrophoretic (DEP) restrictor. The DEP restrictor was connected to the microchannel liquid supply tube. Operation of DEP restrictor influenced the flow rate at the microchannel inlet. Resulting changes in flow structures and vapour content along the microchannel were observed and analysed with a high-speed video camera. Video recordings were synchronised with measurements of differential pressure between the channel inlet and outlet. It was found that it is possible to change average void fraction in the microchannel by switching on and off the voltage applied to the restrictor electrodes. However, to achieve significant variation of the void fraction, applied voltage should be of the order of 2000 Vpp. The voltage switching also generates oscillations of the differential pressure. The amplitude of these oscillations is proportional to the voltage magnitude, reaching 35 Pa for 2400 Vpp.
Go to article

Abstract

This paper presents the results of research regarding measurements of the values of pressure drops during horizontal flow of gas-liquid and gas-liquid-liquid mixture through 180o pipe bends. The conducted insightful analysis and assessment during multi-phase flow in pipe bends has enabled to develop a new method for determination of their values. This new method for determining pressure drops ensures higher precision of calculation in comparison to other methods presented in literature and can be applied for calculation of these parameters during multi-phase flows in pipe bends with various geometries.
Go to article

Abstract

The topic of incompressible fluid flow in rough channels is of practical interest in many diverse applications. It also forms the basis of our understanding of fluid-wall interactions, turbulent eddy generation, and their effect on the frictional pressure losses. Although this topic is also of fundamental interest, the work in this area is entirely guided by the experimental work of earlier investigators [1–6]. The works by Nikuradse [4] and Colebrook [5] constitute a major milestone from which useful empirical models are derived. As we approach the microscale, Nikuradse’s experimental work again is brought to focus, perhaps this time to gain an insight into the mechanisms affecting fluid-wall interaction in rough channels. In this paper, Nikuradse’s work is revisited in light of the recent experimental work on roughness effects in microscale flow geometries.
Go to article

Abstract

The pressure drop in microreactors for the gas - liquid Taylor flow was measured for 4 different microreactor geometries and 3 different gas - liquid systems. The results have been compared with the existing literature correlations. A selection of the best correlations has been made.
Go to article

Abstract

The aim of this study was to determine the solubility of CO2 in perfluorodecalin (PFD) which is frequently used as efficient liquid carrier of respiratory gases in bioprocess engineering. The application of perfluorinated liquid in a microsystem has been presented. Gas-liquid mass transfer during Taylor (slug) flow in a microchannel of circular cross section 0.4 mm in diameter has been investigated. A physicochemical system of the absorption of CO2 from the CO2/N2 mixture in perfluorodecalin has been applied. The Henry’s law constants have been found according to two theoretical approaches: physical (H = 1.22·10-3 mol/m3Pa) or chemical (H = 1.26·10-3 mol/m3Pa) absorption. We are hypothesising that the gas-liquid microchannel system is applicable to determine the solubility of respiratory gases in perfluorinated liquids.
Go to article

Abstract

The combined effect of conjugation, external magnetic field and oscillation on the enhancement of heat transfer in the laminar flow of liquid metals between parallel plate channels is analyzed. In order to make our results useful to the design engineers, we have considered here only the wall materials that are widely employed in liquid metal heat exchangers. Indeed, all the results obtained through this mathematical investigation are in excellent agreement with the available experimental results. The effective thermal diffusivity κ_e is increased by 3×10^6 times due to oscillation and that the heat flux as high as 1.5×10^10 (W/m^2) can be achieved. Based on our investigation, we have recommended the best choice of liquid metal heat carrier, wall material and its optimum thickness along with the optimum value of the frequency to maximize the heat transfer rate. At the optimum frequency, by choosing a wall of high thermal conductivity and optimum thickness, an increase of 19.98% in κ_e can be achieved. Our results are directly relevant to the design of a heat transfer device known as electromagnetic dream pipe which is a very recent development.
Go to article

Abstract

Gas-liquid flows abound in a great variety of industrial processes. Correct recognition of the regimes of a gasliquid flow is one of the most formidable challenges in multiphase flow measurement. Here we put forward a novel approach to the classification of gas-liquid flow patterns. In this method a flow-pattern map is constructed based on the average energy of intrinsic mode function and the volumetric void fraction of gas-liquid mixture. The intrinsic mode function is extracted from the pressure fluctuation across a bluff body using the empirical mode decomposition technique. Experiments adopting air and water as the working fluids are conducted in the bubble, plug, slug, and annular flow patterns at ambient temperature and atmospheric pressure. Verification tests indicate that the identification rate of the flow-pattern map developed exceeds 90%. This approach is appropriate for the gas-liquid flow pattern identification in practical applications.
Go to article

Abstract

To find effective and practical methods to distinguish gas-liquid two-phase flow patterns, new flow pattern maps are established using the differential pressure through a classical Venturi tube. The differential pressure signal was first decomposed adaptively into a series of intrinsic mode functions (IMFs) by the ensemble empirical mode decomposition. Hilbert marginal spectra of the IMFs showed that the flow patterns are related to the amplitude of the pressure fluctuation. The cross-correlation method was employed to sift the characteristic IMF, and then the energy ratio of the characteristic IMF to the raw signal was proposed to construct flow pattern maps with the volumetric void fraction and with the two-phase Reynolds number, respectively. The identification rates of these two maps are verified to be 91.18% and 92.65%. This approach provides a cost-effective solution to the difficult problem of identifying gas-liquid flow patterns in the industrial field.
Go to article

Abstract

Nowadays, the energy cost is very high and this problem is carried out to seek techniques for improvement of the aerothermal and thermal (heat flow) systems performances in different technical applications. The transient and steady-state techniques with liquid crystals for the surface temperature and heat transfer coefficient or Nusselt number distribution measurements have been developed. The flow pattern produced by transverse vortex generators (ribs) and other fluid obstacles (e.g. turbine blades) was visualized using liquid crystals (Liquid Crystal Thermography) in combination with the true-colour image processing as well as planar beam of double-impulse laser tailored by a cylindrical lens and oil particles (particle image velocimetry or laser anemometry). Experiments using both research tools were performed at Gdańsk University of Technology, Faculty of Mechanical Engineering. Present work provides selected results obtained during this research.
Go to article

Abstract

The aim of the present study was to investigate the sensitivity of a multiphase Eulerian CFD model with respect to relations defining drag forces between phases. The mean relative error as well as standard deviation of experimental and computed values of pressure gradient and average liquid holdup were used as validation criteria of the model. Comparative basis for simulations was our own data-base obtained in experiments carried out in a TBR operating at a co-current downward gas and liquid flow. Estimated errors showed that the classical equations of Attou et al. (1999) defining the friction factors Fjk approximate experimental values of hydrodynamic parameters with the best agreement. Taking this into account one can recommend to apply chosen equations in the momentum balances of TBR.
Go to article

Abstract

This study is concerned with liquid flow induced by a disk which rotates steadily around its axis and touches the free surface of liquid contained in a cylindrical vessel. It is a simplified model of the flow in the inlet part of a vertical cooling crystallizer where a rotary distributor of inflowing solution is situated above the free surface of solution contained in the crystalliser. Numerical simulations of flow phenomena were conducted and the simulation results were interpreted assuming an analogy with Kármán’s theoretical equations. In a cylindrical coordinate system, the components of flow velocity were identified as functions of distance from the surface of the rotating disk. The experimental setup was developed to measure velocity fields, using digital particle velocimetry and optical flow. Conclusions concerning the influence of disc rotation on liquid velocity fields were presented and the experimental results were found to confirm the results of numerical simulation. On the basis of simulation data, an approximation function was determined to describe the relationship between the circumferential component of flow velocity and the distance from the disk.
Go to article

Abstract

In this work, the authors proposed a modification of the working space one-strand tundish adapted for slab casting process. Numerical simulations of liquid steel flow in the considered flow reactor were performed. The tundish is equipped with a dam with a multi-hole filter. Two variants of the filter hole arrangement were tested and their effect on the liquid steel flow hydrodynamic structure in the tundish was examined. The computer calculations results were verified by performing experiments on the water model. The result of numerical and physical simulations an RTD (Residence Time Distribution) type F curve was generated, which define the transition zone between the cast steel grades during the sequential casting process. The results of the researches showed that the modification of a dam with a multi-hole filter affects on the formation of the liquid steel flow hydrodynamic structure and the transition zone. Furthermore, examinations of the liquid steel refining ability in the considered tundish were carried out. The influence of the filter holes arrangement on the non-metallic inclusions flotation process to the slag phase and liquid steel filtration processes was checked. Numerical simulations were performed in the Ansys-Fluent computer program.
Go to article

This page uses 'cookies'. Learn more