Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 36
items per page: 25 50 75
Sort by:

Abstract

The concept of inverse systems for standard and positive linear systems is introduced. Necessary and sufficient conditions for the existence of the positive inverse system for continuous-time and discrete-time linear systems are established. It is shown that: 1) The inverse system of continuous-time linear system is asymptotically stable if and only if the standard system is asymptotically stable. 2) The inverse system of discrete-time linear system is asymptotically stable if and only if the standard system is unstable. 3) The inverse system of continuous-time and discrete-time linear systems are reachable if and only if the standard systems are reachable. The considerations are illustrated by numerical examples.
Go to article

Abstract

This paper presents the method of analysis of parametric systems in frequency domain. These systems are also referred to as linear time varying systems (LTV). The article includes a description of an analytical method for determining the frequency response of the first order parametric circuit with non-periodically variable parameters. The results have been illustrated by an example.
Go to article

Abstract

The stability of positive linear continuous-time and discrete-time systems is analyzed by the use of the decomposition of the state matrices into symmetrical and antisymmetrical parts. It is shown that: 1) The state Metzler matrix of positive continuous-time linear system is Hurwitz if and only if its symmetrical part is Hurwitz; 2) The state matrix of positive linear discrete-time system is Schur if and only if its symmetrical part is Hurwitz. These results are extended to inverse matrices of the state matrices of the positive linear systems.
Go to article

Abstract

Necessary and sufficient conditions for robust stability of the positive discrete-time interval system with time-delays are established. It is shown that this system is robustly stable if and only if one well de?ned positive discrete-time system with time-delays is asymptotically stable. The considerations are illustrated by numerical example.
Go to article

Abstract

A new method for computation of positive realizations of given transfer matrices of fractional linear continuous-time linear systems is proposed. Necessary and sufficient conditions for the existence of positive realizations of transfer matrices are given. A procedure for computation of the positive realizations is proposed and illustrated by examples.
Go to article

Abstract

A new concept (notion) of the practical stability of positive fractional discrete-time linear systems is introduced. Necessary and sufficient conditions for the practical stability of the positive fractional systems are established. It is shown that the positive fractional systems are practically unstable if corresponding standard positive fractional systems are asymptotically unstable.
Go to article

Abstract

New tests (criterions) for checking the reachability and the observability of positive linear-discrete-time systems are proposed. The tests do not need checking of rank conditions of the reachability and observability matrices of the systems. Simple sufficient conditions for the unreachability and unobservability of the systems are also established.
Go to article

Abstract

A new class of positive fractional 2D hybrid linear systems is introduced. The solution of the hybrid system is derived. The classical Cayley-Hamilton theorem is extended for fractional 2D hybrid systems. Necessary and sufficient conditions for the positivity are established.
Go to article

Abstract

New frequency domain methods for stability analysis of linear continuous-time fractional order systems with delays of the retarded type are given. The methods are obtained by generalisation to the class of fractional order systems with delays of the Mikhailov stability criterion and the modified Mikhailov stability criterion known from the theory of natural order systems without and with delays. The study is illustrated by numerical examples of time-delay systems of commensurate and non-commensurate fractional orders.
Go to article

Abstract

The concept of strong stability is extended for positive and compartmental linear systems. It is shown that: 1) the asymptotically stable positive and compartmental systems are strongly stable if the eigenvalues of the system matrix are distinct, 2) electrical circuits consisting of resistances, capacitances (inductances) and source voltages are strongly stable.
Go to article

Abstract

In this paper, the results of correlations between air temperature and electricity demand by linear regression and Wavelet Coherence (WTC) approach for three different European countries are presented. The results show a very close relationship between air temperature and electricity demand for the selected power systems, however, the WTC approach presents interesting dynamics of correlations between air temperature and electricity demand at different time-frequency space and provide useful information for a more complete understanding of the related consumption.
Go to article

Abstract

Necessary and sufficient conditions for the reachability and observability of the positive electrical circuits composed of resistors, coils, condensators and voltage sources are established. Definitions of the input-decoupling zeros, output-decoupling zeros and input-output decoupling zeros of the positive electrical circuits are proposed. Some properties of the decoupling zeros of positive electrical circuits are discussed.
Go to article

Abstract

The positivity of fractional descriptor linear continuous-time systems is investigated. The solution to the state equation of the systems is derived. Necessary and sufficient conditions for the positivity of fractional descriptor linear continuous-time systems are established. The considerations are illustrated by numerical examples.
Go to article

Abstract

Simple new necessary and sufficient conditions for asymptotic stability of the positive linear discrete-time systems with delays in states are established. It is shown that asymptotic stability of the system is equivalent to asymptotic stability of the corresponding positive discrete-time system without delays of the same size. The considerations are illustrated by numerical examples.
Go to article

Abstract

Given a linear discrete system with initial state x0 and output function yi , we investigate a low dimensional linear systemthat produces, with a tolerance index ǫ, the same output function when the initial state belongs to a specified set, called ǫ-admissible set, that we characterize by a finite number of inequalities. We also give an algorithm which allows us to determine an ǫ-admissible set.
Go to article

Abstract

Simple necessary and sufficient conditions for robust stability of the positive linear discrete-time systems with delays with linear uncertainty structure in two cases: 1) unity rank uncertainty structure, 2) non-negative perturbation matrices, are established. The proposed conditions are compared with the suitable conditions for the standard systems. The considerations are illustrated by numerical examples.
Go to article

Abstract

This paper considers the feasibility of different technologies for an electromagnetic launcher to assist civil aircraft take-off. This method is investigated to reduce the power required from the engines during initial acceleration. Assisted launch has the potential of reducing the required runway length, reducing noise near airports and improving overall aircraft efficiency through reducing engine thrust requirements. The research compares two possible linear motor topologies which may be efficaciously used for this application. The comparison is made on results from both analytical and finite element analysis (FEA).
Go to article

Abstract

The problem of mathematical modelling and indication of properties of a DIP has been investigated in this paper. The aim of this work is to aggregate the knowledge on a DIP modelling using the Euler-Lagrange formalism in the presence of external forces and friction. To indicate the main properties important for simulation, model parameters identification and control system synthesis, analytical and numerical tools have been used. The investigated properties include stability of equilibrium points, a chaos of dynamics and non-minimum phase behaviour around an upper position. The presented results refer to the model of a physical (constructed) DIP system.
Go to article

Abstract

This paper deals with the modelling of traction linear induction motors (LIMs) for public transportation. The magnetic end effect inherent to these motors causes an asymmetry of their phase impedances. Thus, if the LIM is supplied from the three-phase symmetrical voltage, its phase currents become asymmetric. This effect must be taken into consideration when simulating the LIMs’ performance. Otherwise, when the motor phase currents are assumed to be symmetric in the simulation, the simulation results are in error. This paper investigates the LIM performance, considering the end-effect induced asymmetry of the phase currents, and presents a comparative study of the LIM performance characteristics in both the voltage and the current mode.
Go to article

Abstract

The paper addresses the problem of constrained pole placement in discrete-time linear systems. The design conditions are outlined in terms of linear matrix inequalities for the Dstable ellipse region in the complex Z plain. In addition, it is demonstrated that the D-stable circle region formulation is the special case of by this way formulated and solved pole placement problem. The proposed principle is enhanced for discrete-lime linear systems with polytopic uncertainties.
Go to article

Abstract

The minimum energy control problem for the positive descriptor discrete-time linear systems with bounded inputs by the use of Weierstrass-Kronecker decomposition is formulated and solved. Necessary and sufficient conditions for the positivity and reachability of descriptor discrete-time linear systems are given. Conditions for the existence of solution and procedure for computation of optimal input and the minimal value of the performance index is proposed and illustrated by a numerical example.
Go to article

This page uses 'cookies'. Learn more