Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 57
items per page: 25 50 75
Sort by:

Abstract

Scientists are increasingly specializing in narrower fields, and communication is often difficult between physicists researching elementary particles and those studying semiconductors, not to mention between physicists and biologists or doctors. This makes interdisciplinary work difficult. And yet sometimes they succeed. One thread of work underway at the PAS Institute of High Pressure Physics offers a good example.
Go to article

Abstract

Naukowcy specjalizują się w coraz węższych dziedzinach i często trudno się zrozumieć fizykowi cząstek elementarnych z fizykiem półprzewodników, a tym bardziej fizykowi z biologiem czy lekarzem. Dlatego prace interdyscyplinarne są trudne. A jednak czasem się udają. Na przykład uczonym z Instytutu Wysokich Ciśnień PAN.
Go to article

Abstract

A system for precise angular laser beam deflection by using a plane mirror is presented. The mirror was fixed to two supports attached to its edges. This article details the theoretical basis of how this deflector works. The spring deflection of a flat circular metal plate under a uniform axial buckling was used and the mechanical stress was generated by a piezoelectric layer. The characteristics of the deformation of the plate versus the voltage control of the piezoelectrics were examined and the value of the change resolution possible to obtain was estimated. An experimental system is presented and an experiment performed to examine this system. As a result, a resolution of displacement of 10-8 rad and a range of 10-5 rad were obtained.
Go to article

Abstract

In this study, modification of the AZ91 magnesium alloy surface layer with a CO2 continuous wave operation laser has been taken on. The extent and character of structural changes generated in the surface layer of the material was being assessed on the basis of both macro- and microscopy investigations, and the EDX analysis. Considerable changes in the structure of the AZ91 alloy surface layer and the morphology of phases have been found. The remelting processing was accompanied by a strong refinement of the structure and a more uniform distribution of individual phases. The conducted investigations showed that the remelting zone dimensions are a result of the process parameters, and that they can be controlled by an appropriate combination of basic remelting parameters, i.e. the laser power, the distance from the sample surface, and the scanning rate. The investigations and the obtained results revealed the possibility of an effective modification of the AZ91 magnesium alloy surface layer in the process of remelting carried out with a CO2 laser beam.
Go to article

Abstract

A concept of a highly sensitive and fast-response airborne optoelectronic hygrometer, based on the absorption spectroscopy with laser light tuned to an intense ro-vibronic absorption line of H2O in the 1391– 1393 nm range is presented. The target application of this study is airborne atmospheric measurements, in particular at the top of troposphere and in stratosphere. The cavity ring-down spectroscopy was used to achieve high sensitivity. In order to avoid interference of the results by water desorbed from the instrument walls, the open-path solution was applied. Tests of the instrument, performed in a climatic chamber, have shown some advantages of this concept over typical hygrometers designed for similar applications.
Go to article

Abstract

In the paper an example of application of the Kalman filtering in the navigation process of automatically guided vehicles was presented. The basis for determining the position of automatically guided vehicles is odometry – the navigation calculation. This method of determining the position of a vehicle is affected by many errors. In order to eliminate these errors, in modern vehicles additional systems to increase accuracy in determining the position of a vehicle are used. In the latest navigation systems during route and position adjustments the probabilistic methods are used. The most frequently applied are Kalman filters.
Go to article

Abstract

The aim of the research was to analyze the possibility of using mobile laser scanning systems to acquire information for production and/or updating of a basic map and to propose a no-reference index of this accuracy assessment. Point clouds have been analyzed in terms of content of interpretation and geometric potential. For this purpose, the accuracy of point clouds with a georeference assigned to the base map objects was examined. In order to conduct reference measurements, a geodetic network was designed and also additional static laser scanning data has been used. The analysis of mobile laser scanning (MLS) data accuracy was conducted with the use of 395 check points. In the paper, application of the total Error of Position of the base-map Objects acquired with the use of MLS was proposed. Research results were related to reference total station measurements. The resulting error values indicate the possibility to use an MLS point cloud in order to accurately determine coordinates for individual objects for the purposes of standard surveying studies, e.g. for updating some elements of the base map content. Nevertheless, acquiring MLS point clouds with satisfying accuracy not always is possible, unless specific resolution condition is fulfilled. The paper presents results of accuracy evaluation in different classes of base-map elements and objects.
Go to article

Abstract

The base map provides basic information about land to individuals, companies, developers, design engineers, organizations, and government agencies. Its contents include spatial location data for control network points, buildings, land lots, infrastructure facilities, and topographic features. As the primary map of the country, it must be developed in accordance with specific laws and regulations and be continuously updated. The base map is a data source used for the development and updating of derivative maps and other large scale cartographic materials such as thematic or topographic maps. Thanks to the advancement of science and technology, the quality of land surveys carried out by means of terrestrial laser scanning (TLS) matches that of traditional surveying methods in many respects. This paper discusses the potential application of output data from laser scanners (point clouds) to the development and updating of cartographic materials, taking Poland’s base map as an example. A few research sites were chosen to present the method and the process of conducting a TLS land survey: a fragment of a residential area, a street, the surroundings of buildings, and an undeveloped area. The entire map that was drawn as a result of the survey was checked by comparing it to a map obtained from PODGiK (pol. Powiatowy Ośrodek Dokumentacji Geodezyjnej i Kartograficznej – Regional Centre for Geodetic and Cartographic Records) and by conducting a field inspection. An accuracy and quality analysis of the conducted fieldwork and deskwork yielded very good results, which provide solid grounds for predicating that cartographic materials based on a TLS point cloud are a reliable source of information about land. The contents of the map that had been created with the use of the obtained point cloud were very accurately located in space (x, y, z). The conducted accuracy analysis and the inspection of the performed works showed that high quality is characteristic of TLS surveys. The accuracy of determining the location of the various map contents has been estimated at 0.02-0.03 m. The map was developed in conformity with the applicable laws and regulations as well as with best practice requirements.
Go to article

Abstract

Strained layer InGaAs/GaAs SCH SQW (Separate Confinement Heterostructure Single Quantum Well) lasers were grown by Molecular Beam Epitaxy (MBE). Highly reliable CW (continuous wave) 980-nm, broad contact, pump lasers were fabricated in stripe geometry using Schottky isolation and ridge waveguide construction. Threshold current densities of the order of Jth ≈ 280 A/cm2 (for the resonator length L = 700 um) and differential efficiency η= 0.40 W/A (41%) from one mirror were obtained. The record wall-plug efficiency for AR/HR coated devices was equal to 54%. Theoretical estimations of above parameters, obtained by numerical modelling of devices were Jth ≈ 210 A/cm and η = 0.47 W/A from one mirror, respectively. Degradation studies revealed that uncoated and AR/HR coated devices did not show any appreciable degradation after 1500 hrs of CW operation at 35oC heat sink temperature at the constant optical power (50 mW) conditions.
Go to article

Abstract

The paper deals with the basic set-up of single-frequency microchip laser - so called Lyot filter configuration. Description of its operation and practical realization is given. Some results obtained for Nd:YAG/KTP microchip laser are presented. The evidences of single-frequency operation and its limits are emphasized. Described construction constitutes the base for building the frequency stabilization of green 532 nm microchip laser.
Go to article

Abstract

Hybryd PLD method was used for deposition high quality thin Ti, TiN, Ti(C,N) and DLC coatings. The kinetic energy of the evaporated particles was controlled by application of variation of di#11;erent reactive and non reactive atmospheres during deposition. The purpose was to improve adhesion by building a bridge between the real ceramic coating and the substrate. A new layer composition layout was proposed by application of a bu#11;er, starting layer. Advanced HRTEM investigation based on high resolution transmission electron microscopy was used to reveal structure dependence on specific atmosphere in the reactive chamber. New experimental technique to examine the crystallographic orientation based on X-ray texture tomography was applied to estimate contribution of the atmosphere to crystal orientation. Using Dictyostelium discoideum cells as a model organism for specific and nonspecific adhesion, kinetics of shear flow-induced cell detachment was studied. For a given cell, detachment occurs for critical stress values caused by the applied hydrodynamic pressure above a threshold. Cells are then removed from the substrate with an apparent first-order rate reaction that strongly depends on the stress. The threshold stress depends on cell size and physicochemical properties of the substrate, but it is not a#11;ected by depolymerization of the actin and tubulin cytoskeleton.
Go to article

Abstract

In this contribution an optical method of controlling the state of soft biological tissues in real time, exposed to laser radiation is discussed. The method is based on the assumption that the change dynamics of the amplitude of the scattered diagnostic radiation (λ = 635 nm) is compatible with the change dynamics of the tissue inner structure exposed to the Nd:YAG laser radiation (λ = 1064 nm). In this method the measurement of the tissue temperature is omitted. Exemplary results of the laboratory research on this method and an interpretation of the results are presented.
Go to article

Abstract

Biocompatible coatings produced on the basis of the chemically extracted natural hydroxyapatite (HAp) from the animal bones were deposited using multiplex method comprising glow discharge nitriding (GDN) of the titanium alloy substrate and pulsed laser deposition (PLD) of HAp on the formerly fabricated titanium nitride layer (TiN). The TiN interlayer plays an important role improving adhesion of HAp to substrate and preserves the direct contact of the tissue with metallic substrate in the case of possible cracking of HAp coating. Surface morphology of deposited layers, crystallographic texture and residual stress were studied in relation to the type of laser applied to ablation (Nd:YAG or ArF excimer), laser repetition, temperature of substrate and atmosphere in the reactive chamber.
Go to article

Abstract

The increasing demands for miniaturization and better functionality of electronic components and devices have a significant effect on the requirements facing the printed circuit board (PCB) industry. PCB manufactures are driving for producing high density interconnect (HDI) boards at significantly reduced cost and reduced implementation time. The interconnection complexity of the PCB is still growing and today calls for 50/50 μm or 25/25 μm technology are real. Existing technologies are unable to offer acceptable solution. Recently the Laser Direct Imaging (LDI) technology is considered as an answer for these challenges. LDI is a process of imaging electric circuits directly on PCB without the use of a phototool or mask. Our laboratory system for Laser Direct Imaging is designed for tracks and spaces on PCB with minimum width distance of 50/50 μm. In comparison with conventional photolithography method, this technology is much better for 50/50 μm track and spaces. In our research we used photoresist with resolution 50 μm, but in case of using laser photoresists with better resolution (e.g. 25 μm) it will be possible to image tracks in super-fine-line technology (25/25 μm). The comparison between two technology of creating mosaic pattern tracks on PCB proved that laser imaging is promising technology in high density interconnects patterns, which are widely use in multilayered PCB and similar applications.
Go to article

Abstract

Paper present a thermal analysis of laser heating and remelting of EN AC-48000 (EN AC-AlSi12CuNiMg) cast alloy used mainly for casting pistons of internal combustion engines. Laser optics were arranged such that the impingement spot size on the material was a circular with beam radius rb changes from 7 to 1500 m. The laser surface remelting was performed under argon flow. The resulting temperature distribution, cooling rate distribution, temperature gradients and the depth of remelting are related to the laser power density and scanning velocity. The formation of microstructure during solidification after laser surface remelting of tested alloy was explained. Laser treatment of alloy tests were perform by changing the three parameters: the power of the laser beam, radius and crystallization rate. The laser surface remelting needs the selection such selection of the parameters, which leads to a significant disintegration of the structure. This method is able to increase surface hardness, for example in layered castings used for pistons in automotive engines.
Go to article

Abstract

The sintered stainless steels of different microstructures (austenitic, ferritic and duplex) were laser surface alloyed with hard powders (SiC, Si3N4) and elemental alloying powders (Cr, FeCr, FeNi) to obtain a complex steel microstructure of improved properties. Laser surface alloying (LSA) involved different strategies of powder placing: the direct powder feeding to the molten metal pool and filling grooves machined on the sample surface by powder, and then laser surface melting. Obtained microstructures were characterised and summarised, basing on LOM, SEM and XRD analysis. The links between base material properties, like superficial hardness and microhardness, derived microstructures and erosion resistance was described. The LSA conditions and alloying powder placement strategies on erosion resistance was evaluated. The erosion wear is lower for Cr, FeCr, FeNi laser alloying, where powders were dissolved in the steel microstructure, and hard phases were not precipitated. Precipitations of hard phases (carbides, silicides, martensite formation) reduce erosion resistance of SiC alloyed stainless steel. The LSA with Si3N4 works better due to lack of precipitates and formation of a soft and ductile austenitic microstructure. The erosion wear at the impingement angle of 90° is high for hard and therefore brittle surface layers obtained as a result of alloying by hard particles (SiC, Si3N4). The softer and ductile austenitic stainless steel resist better than harder ferritic and duplex stainless steel material at studied erodent im pingement angle.
Go to article

Abstract

In the present study, Ti6Al4V titanium alloy plates were joined using robotic laser welding method. Pre- and post-weld heat treatments were applied to laser welded joints. After welding stress relieving, solution heat treatment and ageing were also applied to preheated laser welded samples. Effects of heat treatment conditions on microstructural characteristics and mechanical properties of robotic laser welded joints were studied. Aged samples were found to be made of coarsened grains compared to microstructures of non-aged samples. There were increases in ductility and impact toughness of samples applied to ageing increased, while hardness and tensile strength of non-aged samples were higher. The highest value for tensile strength and for impact toughness in welded samples have been identified as 840 MPa and 27 J, respectively. Fractures in tensile test samples and base metal impact test samples took place in the form of ductile fracture, while laser welded impact test samples had fractures in the mode of intergranular fractures with either a quasi-cleavage type or tear ridges. EDS analysis carried out for all heat treatment conditions and welding parameters demonstrated that major element losses were not observed in base metal, HAZ and weld metal.
Go to article

Abstract

The paper presents the study results of laser modification of Vanadis-6 steel after diffusion boronized. The influence of laser beam fluence on selected properties was investigated. Diffusion boronizing lead to formation the FeB and Fe2B iron borides. After laser modification the layers were consisted of: remelted zone, heat affected zone and substrate. It was found that increase of laser beam fluence have influence on increase in dimensions of laser tracks. In the thicker remelting zone, the primary dendrites and boron eutectics were detected. In the thinner remelting zone the primary carbo-borides and eutectics were observed. In obtained layers the FeB, Fe2B, Fe3B0.7C0.3 and Cr2B phases were detected. Laser remelting process caused obtained the mild microhardness gradient from the surface to the substrate. In the remelted zone was in the range from 1800 HV0.1 to 1000 HV0.1. It was found that the laser beam fluence equal to 12.7 J/mm2 was most favorable. Using this value, microhardness was relatively high and homogeneous.
Go to article

Abstract

In the recent years three-dimensional buildings modelling based on an raw air- borne laser scanning point clouds, became an important issue. A significant step towards 3D modelling is buildings segmentation in laser scanning data. For this purpose an algorithm, based on the multi-resolution analysis in wavelet domain, is proposed in the paper. The proposed method concentrates only on buildings, which have to be segmented. All other objects and terrain surface have to be removed. The algorithm works on gridded data. The wavelet-based segmentation proceeds in the following main steps: wavelet decomposition up to appropriately chosen level, thresholding on the chosen and adjacent levels, removal of all coefficients in the so-called influence pyramid and wavelet reconstruction. If buildings on several scaling spaces have to be segmented, the procedure should be applied iteratively. The wavelet approach makes the procedure very fast. However, the limitation of the proposed procedure is its scale-based distinction between objects to be segmented and the rest.
Go to article

Abstract

In the paper a frequency method of filtering airborne laser data is presented. A number of algorithms developed to remove objects above a terrain (buildings, vegetation etc.) in order to obtain the terrain surface were presented in literature. Those all methods published are based on geometrical criteria, i.e. on a specific threshold of elevation differences between two neighbouring points or groups of points. In other words, topographical surface is described in a spatial domain. The proposed algorithm operates on topographical surface described in a frequency domain. Two major tools, i.e. Fast Fourier Transform (FFT) and digital filters are used. The principal assumption is based on the idea that low frequencies are responsible for a terrain surface, while high frequencies are connected to objects above the terrain. The general guidelines of this method were for the first time presented at (Marmol and Jachimski, 2004). Due to the fact that the preliminary results showed some limitations, two-stage filtering algorithm has been introduced. The frequency filter was modified in such a manner that different filter parameters are used to detect buildings than those to recognize vegetation. In the first stage of data processing the filtering concerning elimination of points connected with urban areas was applied. The low-pass filter with parameters determined for urban area was used for the whole tested terrain in that stage. The purpose of the second stage was to eliminate vegetation by using the filter for forest areas. The presented method was tested by using data sets obtained in the ISPRS test on extracting DTM from point clouds. The results of using the two-stage algorithm were com- pared with both reference data and with filtering results of eight method reported to ISPRS test. A numerical comparison of the filter output with a reference data set shows that the filter generates DTM of a satisfactory quality. The accuracy of DTM produced by the frequency algorithm fits the average accuracy of eight methods reported in the ISPRS test.
Go to article

Abstract

The AISI 430 stainless steel with ferritic structure is a low cost material for replacing austenitic stainless steel because of its higher yield strength, higher ductility and also better polarisation resistance in harsh environments. The applications of AISI 430 stainless steel are limited due to insignificant ductility and some undesirable changes of magnetic properties of its weld area with different microstructures. In this research, a study has been done to explore the effects of parameters of laser welding process, namely, welding speed, laser lamping current, and pulse duration, on the coercivity of laser welded AISI 430 stainless steel. Vibrating sample magnetometery has been used used to measure the values of magnetic properties. Observation of microstructural changes and also texture analysis were implemented in order to elucidate the change mechanism of magnetic properties in the welded sections. The results indicated that the laser welded samples undergo a considerable change in magnetic properties. These changes were attributed to the significant grain growth which these grains are ideally oriented in the easiest direction of magnetization and also formation of some non-magnetic phases. The main effects of the above-mentioned factors and the interaction effects with other factors were evaluated quantitatively. The analysis considered the effect of lamping current (175-200 A), pulse duration (10-20 ms) and travel speed (2-10 mm/min) on the coercivity of laser welded samples.
Go to article

Abstract

This article deals with the technology and principles of the laser cutting of ductile cast iron. The properties of the CO2laser beam, input parameters of the laser cutting, assist gases, the interaction of cut material and the stability of cutting process are described. The commonly used material (nodular cast iron - share of about 25% of all castings on the market) and the method of the laser cutting of that material, including the technological parameters that influence the cutting edge, are characterized. Next, the application and use of this method in mechanical engineering practice is described, focusing on fixing and renovation of mechanical components such as removing the inflow gate from castings with the desired quality of the cut, without the further using of the chip machining technology. Experimental samples from the nodular cast iron were created by using different technological parameters of laser cutting. The heat affected zone (HAZ), its width, microstructure and roughness parameter Pt was monitored on the experimental samples (of thickness t = 13 mm). The technological parameters that were varied during the experiments included the type of assist gases (N2and O2), to be more specific the ratio of gases, and the cutting speed, which ranged from 1.6 m/min to 0.32 m/min. Both parameters were changed until the desired properties were achieved.
Go to article

Abstract

Paper describes the results of Fe80Si11B9 amorphous ribbon investigation after pulsed laser interference heating and conventional annealing. As a result of interference heating periodically placed laser heated microareas were obtained. Structure characterisation by scanning and transmission electron microscopy showed in case of laser heated samples presence of crystalline nanostructure in amorphous matrix. Microscopy observations showed significant difference in material structure after laser heating – nanograin structure, and material after annealing – dendritic structure. Magnetic force microscopy investigation showed expanded magnetic structure in laser heated microareas, while amorphous matrix did not give magnetic signal. Change of magnetic properties was examined by magnetic hysteresis loop measurement, which showed that the laser heating did not have a significant influence on soft magnetic properties.
Go to article

Abstract

Detailed studies on the effects of pulsed laser interference heating on surface characteristics and subsurface microstructure of amorphous Fe80Si11B9 alloy are reported. Laser interference heating, with relatively low pulsed laser energy (90 and 120 mJ), but with a variable number (from 50-500) of consecutive laser pulses permitted to get energy accumulation in heated areas. Such treatment allowed to form two- Dimensional micro-islands of laser-affected material periodically distributed in amorphous matrix. The crystallization process of amorphous FeSiB ribbons was studied by means of scanning and transmission electron microscopy. Detailed microstructural examination showed that the use of laser beam, resulted in development of nanostructure in the heated areas of the amorphous ribbon. The generation of nanocrystalline seed islands created by pulsed laser interference was observed. This key result may evidently give new knowledge concerning the differences in microstructure formed during the conventional and lased induced crystallization the amorphous alloys. Further experiments are needed to clarify the effect of pulsed laser interference crystallization on magnetic properties of these alloys.
Go to article

This page uses 'cookies'. Learn more