Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:

Abstract

The organic carbon (OC)-rich, black shale succession of the Middle Triassic Bravaisberget Formation in Spitsbergen contains scattered dolomite-ankerite cement in coarser-grained beds and intervals. This cement shows growth-related compositional trend from non-ferroan dolomite (0–5 mol % FeCO3) through ferroan dolomite (5–10 mol % FeCO3) to ankerite (10–20 mol % FeCO3, up to 1.7 mol % MnCO3) that is manifested by zoned nature of composite carbonate crystals. The d13C (-7.3‰ to -1.8‰ VPDB) and d18O (-9.4‰ to -6.0‰ VPDB) values are typical for burial cements originated from mixed inorganic and organic carbonate sources. The dolomite-ankerite cement formed over a range of diagenetic and burial environments, from early post-sulphidic to early catagenic. It reflects evolution of intraformational, compaction-derived marine fluids that was affected by dissolution of biogenic carbonate, clay mineral and iron oxide transformations, and thermal decomposition of organic carbon (decarboxylation of organic acids, kerogen breakdown). These processes operated during Late Triassic and post-Triassic burial history over a temperature range from approx. 40°C to more than 100°C, and contributed to the final stage of cementation of the primary pore space of siltstone and sandstone beds and intervals in the OC-rich succession.
Go to article

Abstract

51 samples from the Middle Triassic black shales (organic carbon−rich silt− stones; up to 4.9% TOC – Total Organic Carbon) from the stratotype section of the Bravaisberget Formation (western Spitsbergen) were analyzed with respect to isotopic composition of pyritic sulphur (34S) and TOC. Isotopic composition of syngenetic py− rite−bound sulphur shows wide (34S from −26‰ to +8‰ VCDT) and narrow (34S from −4‰ to +17‰ VCDT) variation of the 34S in upper and lower part of the section, respec− tively. Range of the variation is associated with abrupt changes in dominant lithology. Wide 34S variation is found in lithological intervals characterized by alternation of black shales and phosphorite−bearing sandstones. The narrow 34S variation is associated with the lithological interval dominated by black shales only. Wide and narrow variation of the #2;34S values suggests interplay of various factors in sedimentary environment. These fac− tors include oxygen concentration, clastic sedimentation rate, bottom currents and bur− rowing activity. Biological productivity and rate of dissimilatory sulphate reduction had important impact on the 34S variation as well. Wide variation of the 34S values in the studied section resulted from high biological productivity and high rate of dissimilatory sulphate reduction. Variable degree of clastic sedimentation rate and burrowing activity as well as the activity of poorly oxygenated bottom currents could also cause a co−occurrence of isotopically light and heavy pyrite in differentiated diagenetic micro−environments. Occurrence of organic matter depleted in hydrogen could also result in a wide variation of the 34S values. Narrow variation of the #2;34S values was due to a decrease of biological productivity and low rate of dissimilatory sulphate reduction. Low organic matter supply, low oxygen concentration and bottom currents and burrowing activity were also responsible for narrow variation of the 34S. The narrow range of the 34S variation was also due to occurrence of hydrogen−rich organic matter. In the studied section the major change in range of the 34S variation from wide to narrow appears to be abrupt and clearly associated with change in lithology. The change of lithology and isotopic valuesmay sug− gest evolution of the sedimentary environment from high− to low−energy and also facies succession from shallow to deeper shelf. The evolution should be linked with the Late Anisian regional transgressive pulse in the Boreal Ocean.
Go to article

Abstract

Stable isotopes 18O and 13C record of the Kapp Starostin Formation (Late Permian) is presented. The interdependence of δ18O nad δ13C isotope time series is applied for calculating paleotemperatures in the depositional basin of the Kapp Starostin Formation. The obtained results indicate overall cooling from c. 25°—10°C, and confirm some paleogeographical and paleoclimatical inferrences.
Go to article

Abstract

A rich collection of exceptionally preserved Lower Triassic fossil fish remains obtained during the Polish Spitsbergen Expedition of 2005 includes many isolated teeth believed to belong to a saurichthyid actinopterygian. Stable isotope analysis ( d 13 C and d 18 O) of putative Saurichthys teeth from the Hornsund area (South Spitsbergen) acting as a paleoenvironmental proxy has permitted trophic−level reconstruction and comparison with other Lower Triassic fish teeth from the same location. The broader range of d 13 C values obtained for durophagous teeth of the hybodont selachian, Lissodus , probably reflects its migratory behaviour and perhaps a greater feeding diversity. X−ray microcomputed tomography (XMT), a non−destructive technique, is used for the first time in order to elucidate de − tails of tooth histology, the results of which suggest that the method has considerable potential as a future analytical tool.
Go to article

Abstract

Modern hydrology of a typical Arctic fjord (Hornsund, SW Spitsbergen, Sval− bard) was investigated and compared with commonly used in paleoceanography proxies: benthic foraminiferal assemblages and their stable isotope (#2;18O and #2;13C) composition. The benthic foraminifera from Hornsund comprised 45 species and 28 genera. Their spatial variations follow the zonation pattern, resulting from the influence of Atlantic water at the fjord mouth and glacial meltwaters at the fjord head. At the mouth of the fjord, the total number of species and the contribution of agglutinating species were the highest. In the in− ner part of fjord, the foraminiferal faunas were poor in species and individuals, and aggluti− nating species were absent. “Living” (stained) foraminifera were found to be common throughout the short sediment cores (~10 cm long) studied. The stable isotope values of #2;18O and #2;13C were measured on tests of four species: Elphidium excavatum forma clavata, Cassidulina reniforme, Nonionellina labradorica and Cibicides lobatulus. The results con− firmed the importance of species−specific vital effects, particularly in the case of C. loba− tulus. The variability in the isotopic composition measured on different individuals within a single sample are comparable to isotopic composition of the same species test between sam− pling stations. The temperatures and bottom water salinities calculated from #2;18O values in different foraminifera tests mirrored those recorded for bottom waters in the central and outer fjords relatively well. However, in the case of the inner fjord, where winter−cooled bottom waters were present, the calculated values from #2;18O were systematically higher by about 2#3;C. The obtained results imply that particular caution must be taken in interpretation of fjord benthic foraminifera assemblages in high resolution studies and in selection of ma− terial for isotope analyses and their interpretation in cores from inner fjords or silled fjords, where winter−cooled waters may be present.
Go to article

Abstract

Pyrite framboids occur in loose blocks of plant−bearing clastic rocks related to volcano−sedimentary succession of the Mount Wawel Formation (Eocene) in the Dragon and Wanda glaciers area at Admiralty Bay, King George Island, West Antarctica. They were investigated by means of optical and scanning electron microscopy, energy−dispersive spectroscopy, X−ray diffraction, and isotopic analysis of pyritic sulphur. The results suggest that the pyrite formed as a result of production of hydrogen sulphide by sulphate reducing bacteria in near surface sedimentary environments. Strongly negative #2;34SVCDT values of pyrite (−30 – −25 ‰) support its bacterial origin. Perfect shapes of framboids resulted from their growth in the open pore space of clastic sediments. The abundance of framboids at cer− tain sedimentary levels and the lack or negligible content of euhedral pyrite suggest pulses of high supersaturation with respect to iron monosulphides. The dominance of framboids of small sizes (8–16 μm) and their homogeneous distribution at these levels point to recurrent development of a laterally continuous anoxic sulphidic zone below the sediment surface. Sedimentary environments of the Mount Wawel Formation developed on islands of the young magmatic arc in the northern Antarctic Peninsula region. They embraced stagnant and flowing water masses and swamps located in valleys, depressions, and coastal areas that were covered by dense vegetation. Extensive deposition and diagenesis of plant detritus in these environments promoted anoxic conditions in the sediments, and a supply of marine and/or volcanogenic sulphate enabled its bacterial reduction, precipitation of iron mono− sulphides, and their transformation to pyrite framboids.
Go to article

Abstract

The Silurian Pelplin Formation is a part of a thick, mud-prone distal fill of the Caledonian foredeep, which stretches along the western margin of the East European Craton. The Pelplin Formation consists of organic carbon- rich mudstones that have recently been the target of intensive investigations, as they represent a potential source of shale gas. The Pelplin mudstones host numerous calcite concretions containing authigenic pyrite and barite. Mineralogical and petrographic examination (XRD, optical microscopy, cathodoluminoscopy, SEM-EDS) and stable isotope analyses (δ13Corg, δ13C and δ18O of carbonates, δ34S and δ18O of barite) were carried out in order to understand the diagenetic conditions that led to precipitation of this carbonate-sulfide-sulfate paragenesis and to see if the concretions can enhance the understanding of sedimentary settings in the Baltic and Lublin basins during the Silurian. Barite formed during early diagenesis before and during the concretionary growth due to a deceleration of sedimentation during increased primary productivity. The main stages of concretionary growth took place in yet uncompacted sediments shortly after their deposition in the sulfate reduction zone. This precompactional cementation led to preferential preservation of original sedimentary structures, faunal assemblages and early- diagenetic barite, which have been mostly lost in the surrounding mudstones during burial. These components allowed for the reconstruction of important paleoenvironmental conditions in the Baltic and Lublin basins, such as depth, proximity to the detrital orogenic source and marine primary productivity. Investigation of the concretions also enabled estimation of the magnitude of mechanical compaction of the mudstones and calculation of original sedimentation rates. Moreover, it showed that biogenic methane was produced at an early-diagenetic stage, whereas thermogenic hydrocarbons migrated through the Pelplin Formation during deep burial.
Go to article

This page uses 'cookies'. Learn more