To improve the estimation of active power, the possibility of estimating the amplitude square of a signal component using the interpolation of the squared amplitude discrete Fourier transform (DFT) coefficients is presented. As with an energy-based approach, the amplitude square can be estimated with the squared amplitude DFT coefficients around the component peak and a suitable interpolation algorithm. The use of the Hann window, for which the frequency spectrum is well known, and the three largest local amplitude DFT coefficients gives lower systematic errors in squared interpolated approach or in better interpolated squared approach than the energy-based approach, although the frequency has to be estimated in the first step. All investigated algorithms have almost the same noise propagation and the standard deviations are about two times larger than the Cramér-Rao lower bound.
This paper presents a universal approximation of the unit circle by a polygon that can be used in signal processing algorithms. Optimal choice of the values of three parameters of this approximation allows one to obtain a high accuracy of approximation. The approximation described in the paper has a universal character and can be used in many signal processing algorithms, such as DFT, that use the mathematical form of the unit circle. One of the applications of the described approximation is the DFT linear interpolation method (LIDFT). Applying the results of the presented paper to improve the LIDFT method allows one to significantly decrease the errors in estimating the amplitudes and frequencies of multifrequency signal components. The paper presents the derived formulas, an analysis of the approximation accuracy and the region of best values for the approximation parameters.
This overview paper presents and compares different methods traditionally used for estimating damped sinusoid parameters. Firstly, direct nonlinear least squares fitting the signal model in the time and frequency domains are described. Next, possible applications of the Hilbert transform for signal demodulation are presented. Then, a wide range of autoregressive modelling methods, valid for damped sinusoids, are discussed, in which frequency and damping are estimated from calculated signal linear self-prediction coefficients. These methods aim at solving, directly or using least squares, a matrix linear equation in which signal or its autocorrelation function samples are used. The Prony, Steiglitz-McBride, Kumaresan-Tufts, Total Least Squares, Matrix Pencil, Yule-Walker and Pisarenko methods are taken into account. Finally, the interpolated discrete Fourier transform is presented with examples of Bertocco, Yoshida, and Agrež algorithms. The Matlab codes of all the discussed methods are given. The second part of the paper presents simulation results, compared with the Cramér-Rao lower bound and commented. All tested methods are compared with respect to their accuracy (systematic errors), noise robustness, required signal length, and computational complexity.
This paper derives analytical formulas for the systematic errors of the linear interpolated DFT (LIDFT) method when used to estimating multifrequency signal parameters and verifies this analysis using Monte-Carlo simulations. The analysis is performed on the version of the LIDFT method based on optimal approximation of the unit circle by a polygon using a pair of windows. The analytical formulas derived here take the systematic errors in the estimation of amplitude and frequency of component oscillations in the multifrequency signal as the sum of basic errors and the errors caused by each of the component oscillations. Additional formulas are also included to analyze particular quantities such as a signal consisting of two complex oscillations, and the analyses are verified using Monte-Carlo simulations.
This paper presents the general solution of the least-squares approximation of the frequency characteristic of the data window by linear functions combined with zero padding technique. The approximation characteristic can be discontinuous or continuous, what depends on the value of one approximation parameter. The approximation solution has an analytical form and therefore the results have universal character. The paper presents derived formulas, analysis of approximation accuracy, the exemplary characteristics and conclusions, which confirm high accuracy of the approximation. The presented solution is applicable to estimating methods, like the LIDFT method, visualizations, etc.
Quality of energy produced in renewable energy systems has to be at the high level specified by respective standards and directives. One of the most important factors affecting quality is the estimation accuracy of grid signal parameters. This paper presents a method of a very fast and accurate amplitude and phase grid signal estimation using the Fast Fourier Transform procedure and maximum decay side-lobes windows. The most important features of the method are elimination of the impact associated with the conjugate’s component on the results and its straightforward implementation. Moreover, the measurement time is very short ‒ even far less than one period of the grid signal. The influence of harmonics on the results is reduced by using a bandpass pre-filter. Even using a 40 dB FIR pre-filter for the grid signal with THD ≈ 38%, SNR ≈ 53 dB and a 20‒30% slow decay exponential drift the maximum estimation errors in a real-time DSP system for 512 samples are approximately 1% for the amplitude and approximately 8.5・10‒2 rad for the phase, respectively. The errors are smaller by several orders of magnitude with using more accurate pre-filters.