Search results

Filters

  • Journals

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

This work summarizes efficiency measurement results of a full bridge, 3 phase inverter composed of state-of-the-art Si IGBT transistors and Si or SiC diodes. Different (symmetrical and discontinuous) space vector modulation strategies were chosen in order to examine their influence (together with modulation frequency) on inverter losses. Induction machine was used as load, different load points were examined. Results clearly show, that proper modulation strategy, minimizing the switching losses of semiconductor switches, can increase the overall output efficiency at about 1% in case of both silicon and hybrid constructions. The drawback of DPWM approach is connected with the decreased quality of inverter output current. Hybrid technology can also improve the output efficiency at about 1% when compared to traditional constructions, but only in case of elevated switching frequencies. At low frequencies (below 10 kHz) modern semiconductor offer comparable results at much lower device costs.
Go to article

Abstract

A novel circuit topology of modified switched boost high frequency hybrid resonant inverter fitted induction heating equipment is presented in this paper for efficient induction heating. Recently, induction heating technique is becoming very popular for both domestic and industrial purposes because of its high energy efficiency and controllability. Generally in induction heating, a high frequency alternating magnetic field is required to induce the eddy currents in the work piece. High frequency resonant inverters are incorporated in induction heating equipment which produce a high frequency alternating magnetic field surrounding the coil. Previously this high frequency alternating magnetic field was produced by voltage source inverters. But VSIs have several demerits. So, in this paper, a new scheme of modified switched boost high frequency hybrid resonant inverter fitted induction heating equipment has been depicted which enhances the energy efficiency and controllability and the same is validated by PSIM.
Go to article

Abstract

Many parts of remote locations in the world are not electrified even in this Advanced Technology Era. To provide electricity in such remote places renewable hybrid energy systems are very much suitable. In this paper PV/Wind/Battery Hybrid Power System (HPS) is considered to provide an economical and sustainable power to a remote load. HPS can supply the maximum power to the load at a particular operating point which is generally called as Maximum Power Point (MPP). Fuzzy Logic based MPPT (FLMPPT) control method has been implemented for both Solar and Wind Power Systems. FLMPPT control technique is implemented to generate the optimal reference voltage for the first stage of DC-DC Boost converter in both the PV and Wind energy system. The HPS is tested with variable solar irradiation, temperature, and wind speed. The FLMPPT method is compared with P&O MPPT method. The proposed method provides a good maximum power operation of the hybrid system at all operating conditions. In order to combine both sources, the DC bus voltage is made constant by employing PI Controllers for the second stage of DC-DC Buck-Boost converter in both Solar and Wind Power Systems. Battery Bank is used to store excess power from Renewable Energy Sources (RES) and to provide continuous power to load when the RES power is less than load power. A SPWM inverter is designed to convert DC power into AC to supply three phase load. An LC filter is also used at the output of inverter to get sinusoidal current from the PWM inverter. The entire system was modeled and simulated in Matlab/Simulink Environment. The results presented show the validation of the HPS design.
Go to article

This page uses 'cookies'. Learn more