Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 42
items per page: 25 50 75
Sort by:

Abstract

Steel Mesh-Reinforced Cementitious Composites (SMRCC) (traditionally known as ferrocement) have been in existence for few decades, but have some limitations set on element thickness and number of reinforcing mesh layers and the resulting deflection ductility. Therefore, the author has made an attempt to explore whether deflection ductility will improve in mesh-reinforced cementitious composites (25 mm thick) if discontinuous fibres are added to slab elements. For this purpose, thin slab elements of dimensions 700 mm (length) × 200 mm (width) × 25 mm (thickness) were cast and subjected to four point bending tests. Based on the flexural tests conducted on SMRCC (Control Slab Elements, cast with Steel Mesh Volume of reinforcement, MVr = 0.78, 0.94, and 1.23%) and Hybrid Mesh-and-Fibre-Reinforced Cement Based Composite (HMFRCBC) (Test Slab Elements, combining MVr = 0.78, 0.94 and 1.23% and Polyolefin Fibre Volume fraction, PO-FVf = 0.5‒2.5% of volume of specimens, with 0.5% interval), load-deflection and the deflection ductility index were analyzed. From the flexural load-deflection curves it has been observed that HMFRCBC slabs demonstrate higher flexural load-carrying capacity and deflection ductility when compared to SMRCC slabs. This study shows that higher the polyolefin fibre volume fraction (PO-FVf) from 0.5 to 2.5% (with a 0.5% interval) in HMFRCBC slabs, the higher the flexural deflection ductility. The Deflection Ductility Index (DDI) of HMFRCBC (with 5 layers of mesh and PO-FVf = 2.5%) is 4.5 times that of SMRCC. This study recommends that HMFRCBC can be used as an innovative construction material due to its higher flexural ductility characteristics.
Go to article

Abstract

The subject of this paper is the study of the specificity of the transformation of the urban public spaces of the Western world and the problem of the multi form nature of this phenomenon. The Author uses such concepts as that of the "hybrid" and of "hybridization" borrowed from the field of natural sciences and explains the reasons for their introduction within this specific scope of research in a broad manner.
Go to article

Abstract

The intercalation into interlayer spaces of montmorillonite (MMT), obtained from natural calcium bentonite, was investigated. Modification of MMT was performed by the poly(acrylic acid-co-maleic acid) sodium salt (co-MA/AA). Efficiency of modification of MMT by sodium salt co-MA/AA was assessed by the infrared spectroscopic methods (FTIR), X-ray diffraction method (XRD) and spectrophotometry UV-Vis. It was found, that MMT can be relatively simply modified with omitting the preliminary organofilisation – by introducing hydrogel chains of maleic acid-acrylic acid copolymer in a form of sodium salt into interlayer galleries. A successful intercalation by sodium salt of the above mentioned copolymer was confirmed by the powder X-ray diffraction (shifting the reflex(001) originated from the montmorillonite phase indicating an increase of interlayer distances) as well as by the infrared spectroscopy (occurring of vibrations characteristic for the introduced organic macromolecules). The performed modification causes an increase of the ion exchange ability which allows to assume that the developed hybrid composite: MMT-/maleic acid-acrylic acid copolymer (MMT-co- MA/AA) can find the application as a binding material in the moulding sands technology. In addition, modified montmorillonites indicate an increased ability for ion exchanges at higher temperatures (TG-DTG, UV-Vis). MMT modified by sodium salt of maleic acid-acrylic acid copolymer indicates a significant shifting of the loss of the ion exchange ability in the direction of the higher temperature range (500–700°C).
Go to article

Abstract

This article considers designing of a renewable electrical power generation system for self-contained homes away from conventional grids. A model based on a technique for the analysis and evaluation of two solar and wind energy sources, electrochemical storage and charging of a housing area is introduced into a simulation and calculation program that aims to decide, based on the optimized results, on electrical energy production system coupled or separated from the two sources mentioned above that must be able to ensure a continuous energy balance at any time of the day. Such system is the most cost-effective among the systems found. The wind system adopted in the study is of the low starting speed that meets the criteria of low winds in the selected region under study unlike the adequate solar resource, which will lead to an examination of its feasibility and profitability to compensate for the inactivity of photovoltaic panels in periods of no sunlight. That is a system with fewer photovoltaic panels and storage batteries whereby these should return a full day of autonomy. Two configurations are selected and discussed. The first is composed of photovoltaic panels and storage batteries and the other includes the addition of a wind system in combination with the photovoltaic system with storage but at a higher investment cost than the first. Consequently, this result proves that is preferable to opt for a purely photovoltaic system supported by the storage in this type of site and invalidates the interest of adding micro wind turbines adapted to sites with low wind resources.
Go to article

Abstract

Hybrid Renewable Energy Systems connected to the traditional power suppliers are an interesting technological solution in the field of energy engineering and the integration of renewable systems with other energy systems can significantly increase in energy reliability. In this paper, an analysis and optimization of the hybrid energy system, which uses photovoltaic modules and wind turbines components connected to the grid, is presented. The system components are optimized using two objectives criteria: economic and environmental. The optimization has been performed based on the experimental data acquired for the whole year. Results showed the optimal configuration for the hybrid system based on economical objective, that presents the best compromise between the number of components and total efficiency. This achieved the lowest cost of energy but with relatively high CO2 emissions, while environmental objective results with lower CO2 emissions and higher cost of energy and presents the best compromise between the number of components and system net present cost. It has been shown that a hybrid system can be optimized in such a way that CO2 emission is maximally reduced and – separately – in terms of reducing the cost. However, the study shows that these two criteria cannot be optimized at the same time. Reducing the system cost increase CO2 emission and enhancing ecological effect makes the system cost larger. However, depends on strategies, a balance between different optimization criteria can be found. Regardless of the strategy used economic criteria – which also indirect takes environmental aspects as a cost of penalties – should be considered as a major criterion of optimization while the other objectives including environmental objectives are less important.
Go to article

Abstract

Using renewable energy sources for electricity production is based on the processing of primary energy occurring in the form of sun, wind etc., into electrical energy. Economic viability using those sources in small power plants strongly depends on the support system, based mainly on financial instruments. Micro-installations, by using special instruments dedicated to the prosumer market may become more and more interesting not only in terms of environmental energy, but also financial independence. In the paper, the term hybrid power plant is understood to mean a production unit generating electricity or electricity and heat in the process of energy production, in which two or more renewable energy sources or energy sources other than renewable sources are used. The combination of the two energy sources is to their mutual complementarity, to ensure the continuity of the electricity supply. The ideal situation would be if both sources of energy included in the hybrid power plant continuously covered the total demand for energy consumers. Unfortunately, due to the short-term and long-term variability of weather conditions, such a balance is unattainable. The paper assesses the possibility of balancing the hybrid power plant in daily and monthly periods. Basic types of power plants and hybrid components and system support micro-installations were characterized. The support system is based particularly on a system of feed-in tariffs and the possibility of obtaining a preferential loan with a subsidy (redemption of part of the loan size). Then, an analysis of energy and economic efficiency for a standard set of hybrid micro-installations consisting of a wind turbine and photovoltaic panels with a total power of 5 kW, were presented. Fourteen variants of financing, economic efficiency compared with the use of the method of the simple payback period were assumed.
Go to article

Abstract

This article presents a hybrid control system for a group of mobile robots. The components of this system are the supervisory controller(s), employing a discrete, event-driven model of concurrent robot processes, and robot motion controllers, employing a continuous time model with event-switched modes. The missions of the robots are specified by a sequence of to-be visited points, and the developed methodology ensures in a formal way their correct accomplishment.
Go to article

Abstract

We discuss recent progress in hybrid atomistic-continuum methods with particular emphasis on developments in boundary condition imposition in molecular simulations, an essential ingredient of hybrid methods. Both Dirichlet (state variable) and flux boundary conditions are discussed. We also briefly review various coupling approaches and discuss the effects of compressibility and molecular fluctuations on the choice of coupling method. Common elements between hybrid methods and related multiscale simulation approaches are also briefly discussed.
Go to article

Abstract

Searching for new refrigerants is one of the most significant scientific problems in refrigeration. There are ecological refrigerants commonly known: H2O and CO2. H2O and CO2 known as natural refrigerants, but they have problems:a high freezing point of H2O and a low triple point of CO2. These problems can be solved by the application of a hybrid sorption-compression refrigeration cycle. The cycle combines the application possibility of H2O in the high temperature sorption stage and the low temperature application of CO2 in the compression stage. This solution gives significant energy savings in comparison with the two-stage compressor cycle and with the one-stage transcritical CO2 cycle. Besides, the sorption cycle may be powered by low temperature waste heat or renewable heat. This is an original idea of the authors. In the paper an analysis of the possible extension of this solution for high capacity industrial refrigeration is presented. The estimated energy savings as well as TEWI (Total Equivalent Warming Impact) index for ecological gains are calculated.
Go to article

Abstract

The paper discusses the results of investigations of material, tribological and anti-corrosion properties of hybrid coatings of the Cr/CrN type, consisting of chromium and chromium nitride, formed on the surface of alloy tool steel by the Arc-PVD method. Investigations of the morphology and microstructure of hybrid coatings, as well as of their phase composition were carried out. The studies on mechanical properties included tests on hardness and Young’s modulus using the nanoindentation method. Tests on adhesion were conducted using the scratch-test method. Tribological properties of the obtained coatings were evaluated by the pin-on-disc method. Resistance to corrosion was determined by electrochemical methods. It was shown that hybrid coatings of the Cr/CrN type are characterized by good adhesion to the substrate and very good tribological properties, as well as by very good resistance to corrosion in a solution containing chlorine ions.
Go to article

Abstract

The requirements for environmentally friendly refrigerants promote application of CO2and water as working fluids. However there are two problems related to that, namely high temperature limit for CO2in condenser due to the low critical temperature, and low temperature limit for water being the result of high triple point temperature. This can be avoided by application of the hybrid adsorption-compression system, where water is the working fluid in the adsorption high temperature cycle used to cool down the CO2compression cycle condenser. The adsorption process is powered with a low temperature renewable heat source as solar collectors or other waste heat source. The refrigeration system integrating adsorption and compression system has been designed and constructed in the Laboratory of Thermodynamics and Thermal Machine Measurements of Cracow University of Technology. The heat source for adsorption system consists of 16 tube tulbular collectors. The CO2compression low temperature cycle is based on two parallel compressors with frequency inverter. Energy efficiency and TEWI of this hybrid system is quite promising in comparison with the compression only systems.
Go to article

Abstract

This study investigates the use of steel fibers and hybrid composite with a total fibers content of 2% on the high strength flowing concrete and determines the density, compressive strength, static modulus of elasticity, flexural strength and toughness indices for the mixes. The results show that the inclusion of more than 0.5% of palm fibers in hybrid fibers mixes reduces the compressive strength. The hybrid fibers can be considered as a promising concept and the replacement of a portion of steel fibers with palm fibers can significantly reduce the density, enhance the flexural strength and toughness. The results also indicates that the use of hybrid fibers (1.5 steel fibers + 0.5% palm fibers) in specimens increases significantly the toughness indices and thus the use of hybrid fibers combinations in reinforced concrete would enhance their flexural toughness & rigidity and enhance their overall performances.
Go to article

Abstract

In recent years, with the rapid development of digital components, digital electronic computers, especially microprocessors, digital controllers have replaced analog controllers on many occasions. The application of digital controller makes the performance analysis of impulsive system more and more important. This paper considers global exponential stability (GES) of impulsive delayed nonlinear hybrid differential systems (IDNHDS).Through the application of the Lyapunov method and the Razumikhin technique, a series of uncomplicated and useful guiding principles have been obtained. The results of a numerical simulation are presented to demonstrate that the method is correct and effective.
Go to article

Abstract

The metropolis of Barcelona is one of the first ten Europe's urban agglomerations. The geographic and natural conditions of the city - located in area between the sea and the forested mountain ranges running parallel to the coast and divided by broad river valleys - have considerably influenced the formation of its hybrid urban structure. The heart of the agglomeration is still Barcelona, established by the Phoenicians in a natural port at the foot of the Montjiuc hill, growing together with its neighbouring towns for more than two thousand years now, incessantly filling one fragment of natural landscape after another with urban fabric. Monumental edifices and high-rise buildings erected in all historic periods have been inorming visitors of the power of teh city and the same time defining places which are important for its urban composition and status. Recent decades have brought no revolutionary changes in this trend. What was changed, though, are the architectural forms of those most emblematic structures in the scale of the metropolis.
Go to article

Abstract

This research presents a comparative study for maximum power point tracking (MPPT) methodologies for a photovoltaic (PV) system. A novel hybrid algorithm golden section search assisted perturb and observe (GSS-PO) is proposed to solve the problems of the conventional PO (CPO). The aim of this new methodology is to boost the efficiency of the CPO. The new algorithm has a very low convergence time and a very high efficiency. GSS-PO is compared with the intelligent nature-inspired multi-verse optimization (MVO) algorithm by a simulation validation. The simulation study reveals that the novel GSS-PO outperforms MVO under uniform irradiance conditions and under a sudden change in irradiance.
Go to article

Abstract

The aim of this article is to present a modern method of convective drying intensification caused by the external action of ultrasound. The purpose of this study is to discover the mechanism of ultrasonic interaction between the solid skeleton and the moisture in pores. This knowledge may help to explain the enhancement of drying mechanism affected by ultrasound, particularly with respect to biological products like fruits and vegetables. The experimental kinetics tests were conducted in a hybrid dryer equipped with a new ultrasonic generator. The drying kinetics curves determined on the basis of drying model developed by the author were validated with those by the ones obtained from experimental tests. The intensification of heat and mass transfer processes due to ultrasound induced heating effect and vibration effect are analysed. The obtained results allow to state that ultrasound makes drying processes more effective and enhance the drying efficiency of biological products without significant elevation of their temperature.
Go to article

Abstract

A simple analytical method for determination of basic hydrodynamic characteristics of hybrid fluidized-bed air-lift devices was presented. These devices consist of two parts: a two-phase air-lift part and a two-phase liquid-solid fluidized-bed part. Forced circulation of fluid in the air-lift part is used for fluidization of solid particles in the fluidized-bed part. According to the opinion given in the literature, if such apparatus is used for aerobic microbiological processes, its advantage is lower shear forces acting on the biofilm immobilized on fine-grained material compared with shear forces in three-phase fluidized-bed bioreactors. Another advantage is higher biomass concentration due to its immobilization on fine particles, compared with two-phase airlift bioreactors. A method of calculating gas hold-up in the air-lift part, and gas and liquid velocities in all zones of the analyzed apparatus is presented.
Go to article

Abstract

Recently, there has been research on high frequency dissipative mufflers. However, research on shape optimization of hybrid mufflers that reduce broadband noise within a constrained space is sparse. In this paper, a hybrid muffler composed of a dissipative muffler and a reactive muffler within a constrained space is assessed. Using the eigenvalues and eigenfunctions, a coupling wave equation for the perforated dissipative chamber is simplified into a four-pole matrix form. To efficiently find the optimal shape within a constrained space, a four-pole matrix system used to evaluate the acoustical performance of the sound transmission loss (STL) is evaluated using a genetic algorithm (GA). A numerical case for eliminating a broadband venting noise is also introduced. To verify the reliability of a GA optimization, optimal noise abatements for two pure tones (500 Hz and 800 Hz) are exemplified. Before the GA operation can be carried out, the accuracy of the mathematical models has been checked using experimental data. Results indicate that the maximal STL is precisely located at the desired target tone. The optimal result of case studies for eliminating broadband noise also reveals that the overall sound power level (SWL) of the hybrid muffler can be reduced from 138.9 dB(A) to 84.5 dB(A), which is superior to other mufflers (a one-chamber dissipative and a one-chamber reactive muffler). Consequently, a successful approach used for the optimal design of the hybrid mufflers within a constrained space has been demonstrated.
Go to article

Abstract

The paper presents a simulation model of the hybrid magnetic bearing dedicated to simulations of transient state. The proposed field-circuit model is composed of two components. The first part constitutes a set of ordinary differential equations that describes electrical circuits and mechanics. The second part of the simulation model consists of parameters such as magnetic forces, dynamic inductances and velocity-induced voltages obtained from the 3D finite element analysis. The MATLAB/Simulnik softwarewas used to implement the simulation model with the required control system. The proposed field-circuit model was validated by comparison of time responses with the prototype of the hybrid magnetic bearing.
Go to article

Abstract

Automation of earth moving machineries is a widely studied problem. This paper focusses on one of the main challenges in automation of the earth moving industry, estimation of loading torque acting on the machinery. Loading torque acting on the excavation machinery is a very significant aspect in terms of both machine and operator safety. In this study, a disturbance observer-assisted control system for the estimation of loading torque acting on a robotic backhoe during excavation process is presented. The proposed observer does not use any acceleration measurements, rather, is proposed as a function of joint velocity. Numerical simulations are performed to demonstrate the effectiveness of the proposed control scheme in tracking the reaction torques for a given dig cycle. Co-simulation experiments demonstrate robust performance and accurate tracking of the proposed control in both disturbance torque and position tracking. Further, the performance and sensitivity of the proposed control are also analyzed through the help of performance error quantifiers, the root-mean-square (RMS) values of the position and disturbance tracking errors.
Go to article

Abstract

The paper presents the results of studies of hybrid composite layers Ni/Al2O3/Cgraphite produced by the electrodeposition method. Three variants of hybrid composite layers were prepared in electrolyte solutions with the same amounts of each dispersion phases which were equal to 0.25; 0.50 and 0.75 g/dm3. The structure of Ni/Al2O3/Cgraphite layers as well as the Al2O3 and graphite powders, which were used as dispersion phases was investigated. The results of morphology and surface topography of produced layers are presented. The modulus of elasticity and microhardness of the material of produced layers were determined by DSI method. Tribological and corrosion resistance tests of produced layers were carried out. Realized studies have shown that the material of the produced layers is characterized by a nanocrystalline structure. Incorporation of dispersion phases into the nickiel matrix increases the degree of surface development of layers. Ni/Al2O3/Cgraphite layers are characterized by high hardness and abrasion resistance by friction, furthermore, they provide good corrosion protection for the substrate material.
Go to article

Abstract

The objective of the present research is to develop the novel multi-compaction technology to produce hybrid structure in powder metallurgy (P/M) components using dissimilar Fe-based alloys. Two distinct powder alloys with different compositions were are used in this study: Fe-Cr-Mo-C pre-alloyed powder for high strength and Fe-Cu-C mixed powder for enhanced machinability and lower material cost. Initially, Fe-Cu-C was pre-compacted using a bar-shaped die with lower compaction pressure. The green compact of Fe-Cu-C alloy was inserted into a die residing a half of the die, and another half of the die was filled with the Fe-Cr-Mo-C powder. Then they subsequently underwent re-compaction with higher pressure. The final compact was sintered at 1120°C for 60 min. In order to determine the mechanical behavior, transverse rupture strength (TRS) and Vickers hardness of sintered materials were measured and correlated with density variations. The microstructure was characterized using optical microscope and scanning electron microscope to investigate the interfacial characteristics between dissimilar P/M alloys.
Go to article

Abstract

The paper presents a model of a rapping system of an electrostatic precipitator. The rapping system consists of a set of collecting electrodes hanging on a suspension bar and braced together in a brushing bar. The suspension and brushing bars are modeled using the rigid finite element method, while the collecting plates are modeled using the hybrid method. The method combines the rigid finite element method with the classical finite element method. As a result, the mass matrix is diagonal. Some results of numerical simulations concerning free vibrations of the collecting plates and the influence of the number of elements, into which the plate is divided, on the vibrations of the rapping system are presented.
Go to article

Abstract

The adjustment problem of the so-called combined (hybrid, integrated) network created with GNSS vectors and terrestrial observations has been the subject of many theoretical and applied works. The network adjustment in various mathematical spaces was considered: in the Cartesian geocentric system on a reference ellipsoid and on a mapping plane. For practical reasons, it often takes a geodetic coordinate system associated with the reference ellipsoid. In this case, the Cartesian GNSS vectors are converted, for example, into geodesic parameters (azimuth and length) on the ellipsoid, but the simple form of converted pseudo-observations are the direct differences of the geodetic coordinates. Unfortunately, such an approach may be essentially distorted by a systematic error resulting from the position error of the GNSS vector, before its projection on the ellipsoid surface. In this paper, an analysis of the impact of this error on the determined measures of geometric ellipsoid elements, including the differences of geodetic coordinates or geodesic parameters is presented. Assuming that the adjustment of a combined network on the ellipsoid shows that the optimal functional approach in relation to the satellite observation, is to create the observational equations directly for the original GNSS Cartesian vector components, writing them directly as a function of the geodetic coordinates (in numerical applications, we use the linearized forms of observational equations with explicitly specified coefficients). While retaining the original character of the Cartesian vector, one avoids any systematic errors that may occur in the conversion of the original GNSS vectors to ellipsoid elements, for example the vector of the geodesic parameters. The problem is theoretically developed and numerically tested. An example of the adjustment of a subnet loaded from the database of reference stations of the ASG-EUPOS system was considered for the preferred functional model of the GNSS observations.
Go to article

This page uses 'cookies'. Learn more