Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

Calretinin (CR), a calcium-binding protein from EF-hand family, is localised in non-pyramidal GABA-ergic interneurons of the hippocampus. CR takes part in maintaining calcium binding homeostasis, which suggests its neuroprotective role. Hippocampal neurons contain membrane transient receptor potential vanilloid 1 (TRPV1) which binds to capsaicin (CAP) contained in habanero pepper fruits. Few in vivo studies have revealed the effect of CAP on interneurons containing CR. The aim of the present study was to investigate the CR immunoreac- tivity in interneurons of the hippocampal CA1 field and dentate gyrus (DG) in adult rats after intragastric admin- istration of the habanero pepper fruits. Wistar rats received a peanut oil – control group (C), and oil suspension of habanero pepper fruits at doses of 0.025 g dm/kg b.w. – group I and 0.08 g dm/kg b.w. – group II for 28 days. After euthanasia, the brains were collected and embedded in paraffin blocks using a routine histological tech- nique. Frontal hippocampal sections were immunohistochemically stained for CR by using a peroxidase-antiper- oxidase method. CR immunoreactive (CR-IR) interneurons were morphologically and morphometrically ana- lyzed under a light microscope. The results showed similar shapes and distribution of cells in both areas of the brain in group C and I of animals. However, CR-IR interneurons in the hippocampal CA1 field and in DG were occasionally observed in the group II of rats. The results of morphometric studies did not reveal statistically significant differences in the surface area and shape index of cells between examined brain regions from groups I and II compared to group C. Only in group II of rats, an increase in the digital immunostaining intensity of CR-IR interneurons was found in DG. Low number of CR-IR interneurons in the hippocampal CA1 field and in the DG, under the influence of a large dose of habanero pepper fruits containing CAP, may be caused by the activation of TRPV1 receptors and the increase in Ca2+ ions in these cells. This phenomenon may ultimately lead to neuronal death and may disturb neuronal conduction.
Go to article

Abstract

Therefore, the aim of the present study was to evaluate the possible effect of bilberry fruit (Vaccinium myrtillus L.) supplement in a daily diet on the cognitive behaviour of the rats and the expression of paravalbumin (PV) in populations of hippocampal neurons. It has been postulated that the antioxidants present in bilberry fruit may act as neuroprotective factors playing also a significant role as memory enhancements. Forty Wistar rats with a similar average body weight (460 ± 0.4 g) were divided into four groups (n=10 per group). The control group received standard feed (210 g/week), whereas animals of experimental groups received standard feed supplemented with bilberry (per os) at consumed doses of 2 g (group I), 5 g (group II), and 10 g/kg b.w./ /day (group III). After three months of feeding with bilberry, the modified elevated plus-maze test (mEPM) was performed. After 32 weeks of feeding, brains were collected and PV-immunoreactive (ir) neurons were immunohistochemically visualized. In the modified elevated plus-maze test, transfer latency examined 2 h and 24 h after the acquisition session was significantly shorter (p<0.05) in the group II in comparison with the control group. In CA1 and CA2/CA3 hippocampal fields as well as dentate gyrus of all experimental groups, a significant (p<0.05) decrease in number of PV-ir neurons were found. In relation to the control group, the mean subpopulation of PV-ir neurons found in groups II and III were significantly reduced. The subpopulations of PV-ir neurons found in DG of all experimental groups were significantly reduced in comparison to the control. In conclusion the in the present paper we demonstrated a relationship between the diet rich in a bilberry fruit and process of memory as well as numbers of calcium- binding protein-expressing hippocampal neurons. Our results may be source of basic knowledge for further research aiming at neuroprotective role of the bilberry fruit.
Go to article

This page uses 'cookies'. Learn more