Search results

Filters

  • Journals
  • Date

Search results

Number of results: 7
items per page: 25 50 75
Sort by:

Abstract

A substantial quantity of research on muffler design has been restricted to a low frequency range using the plane wave theory. Based on this theory, which is a one-dimensional wave, no higher order wave has been considered. This has resulted in underestimating acoustical performances at higher frequencies when doing muffler analysis via the plane wave model. To overcome the above drawbacks, researchers have assessed a three-dimensional wave propagating for a simple expansion chamber muffler. Therefore, the acoustic effect of a higher order wave (a high frequency wave) is considered here. Unfortunately, there has been scant research on expansion chamber mufflers equipped with baffle plates that enhance noise elimination using a higher-order-mode analysis. Also, space-constrained conditions of industrial muffler designs have never been properly addressed. So, in order to improve the acoustical performance of an expansion chamber muffler within a constrained space, the optimization of an expansion chamber muffler hybridized with multiple baffle plates will be assessed. In this paper, the acoustical model of the expansion chamber muffler will be established by assuming that it is a rigid rectangular tube driven by a piston along the tube wall. Using an eigenfunction (higher-order-mode analysis), a four-pole system matrix for evaluating acoustic performance (STL) is derived. To improve the acoustic performance of the expansion chamber muffler, three kinds of expansion chamber mufflers (KA-KC) with different acoustic mechanisms are introduced and optimized for a targeted tone using a genetic algorithm (GA). Before the optimization process is performed, the higher-order-mode mathematical models of three expansion chamber mufflers (A-C) with various allocations of inlets/outlets and various chambers are also confirmed for accuracy. Results reveal that the STL of the expansion chamber mufflers at the targeted tone has been largely improved and the acoustic performance of a reverse expansion chamber muffler is more efficient than that of a straight expansion chamber muffler. Moreover, the STL of the expansion chamber mufflers will increase as the number of the chambers that separate with baffles increases.
Go to article

Abstract

An optimal sensor placement methodology is implemented and herein proposed for SHM model-assisted design and analysis purposes. The kernel of this approach analysis is a genetic-based algorithm providing the sensor network layout by optimizing the probability of detection (PoD) function while, in this preliminary phase, a classic strain energy approach is adopted as well established damage detection criteria. The layout of the sensor network is assessed with respect to its own capability of detection, parameterized through the PoD. A distributed fiber optic strain sensor is adopted in order to get dense information of the structural strain field. The overall methodology includes an original user-friendly graphical interface (GUI) that reduces the time-to-design costs needs. The proposed methodology is preliminarily validated for isotropic and anisotropic elements.
Go to article

Abstract

The presented paper concerns CFD optimization of the straight-through labyrinth seal with a smooth land. The aim of the process was to reduce the leakage flow through a labyrinth seal with two fins. Due to the complexity of the problem and for the sake of the computation time, a decision was made to modify the standard evolutionary optimization algorithm by adding an approach based on a metamodel. Five basic geometrical parameters of the labyrinth seal were taken into account: the angles of the seal’s two fins, and the fin width, height and pitch. Other parameters were constrained, including the clearance over the fins. The CFD calculations were carried out using the ANSYS-CFX commercial code. The in-house optimization algorithm was prepared in the Matlab environment. The presented metamodel was built using a Multi-Layer Perceptron Neural Network which was trained using the Levenberg-Marquardt algorithm. The Neural Network training and validation were carried out based on the data from the CFD analysis performed for different geometrical configurations of the labyrinth seal. The initial response surface was built based on the design of the experiment (DOE). The novelty of the proposed methodology is the steady improvement in the response surface goodness of fit. The accuracy of the response surface is increased by CFD calculations of the labyrinth seal additional geometrical configurations. These configurations are created based on the evolutionary algorithm operators such as selection, crossover and mutation. The created metamodel makes it possible to run a fast optimization process using a previously prepared response surface. The metamodel solution is validated against CFD calculations. It then complements the next generation of the evolutionary algorithm.
Go to article

Abstract

In order to enhance the acoustical performance of a traditional straight-path automobile muffler, a multi-chamber muffler having reverse paths is presented. Here, the muffler is composed of two internally parallel/extended tubes and one internally extended outlet. In addition, to prevent noise transmission from the muffler’s casing, the muffler’s shell is also lined with sound absorbing material. Because the geometry of an automotive muffler is complicated, using an analytic method to predict a muffler’s acoustical performance is difficult; therefore, COMSOL, a finite element analysis software, is adopted to estimate the automotive muffler’s sound transmission loss. However, optimizing the shape of a complicated muffler using an optimizer linked to the Finite Element Method (FEM) is time-consuming. Therefore, in order to facilitate the muffler’s optimization, a simplified mathematical model used as an objective function (or fitness function) during the optimization process is presented. Here, the objective function can be established by using Artificial Neural Networks (ANNs) in conjunction with the muffler’s design parameters and related TLs (simulated by FEM). With this, the muffler’s optimization can proceed by linking the objective function to an optimizer, a Genetic Algorithm (GA). Consequently, the discharged muffler which is optimally shaped will improve the automotive exhaust noise.
Go to article

Abstract

The paper presents optimization of power line geometrical parameters aimed to reduce the intensity of the electric field and magnetic field intensity under an overhead power line with the use of a genetic algorithm (AG) and particle swarm optimization (PSO). The variation of charge distribution along the conductors as well as the sag of the overhead line and induced currents in earth wires were taken into account. The conductor sag was approximated by a chain curve. The charge simulation method (CSM) and the method of images were used in the simulations of an electric field, while a magnetic field were calculated using the Biot–Savart law. Sample calculations in a three-dimensional system were made for a 220 kV single – circuit power line. A comparison of the used optimization algorithms was made.
Go to article

Abstract

The near net shaped manufacturing ability of squeeze casting process requiresto set the process variable combinations at their optimal levels to obtain both aesthetic appearance and internal soundness of the cast parts. The aesthetic and internal soundness of cast parts deal with surface roughness and tensile strength those can readily put the part in service without the requirement of costly secondary manufacturing processes (like polishing, shot blasting, plating, hear treatment etc.). It is difficult to determine the levels of the process variable (that is, pressure duration, squeeze pressure, pouring temperature and die temperature) combinations for extreme values of the responses (that is, surface roughness, yield strength and ultimate tensile strength) due to conflicting requirements. In the present manuscript, three population based search and optimization methods, namely genetic algorithm (GA), particle swarm optimization (PSO) and multi-objective particle swarm optimization based on crowding distance (MOPSO-CD) methods have been used to optimize multiple outputs simultaneously. Further, validation test has been conducted for the optimal casting conditions suggested by GA, PSO and MOPSO-CD. The results showed that PSO outperformed GA with regard to computation time.
Go to article

This page uses 'cookies'. Learn more