Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 109
items per page: 25 50 75
Sort by:

Abstract

Increasing the share of energy production from renewable sources (RES) plays a key role in the sustainable and more competitive development of the energy sector. Among the renewable energy sources, the greatest increase can be observed in the case of solar and wind power generation. It should be noted that RES are an increasingly important elements of the power systems and that their share in energy production will continue to rise. On the other hand the development of variable generation sources (wind and solar energy) poses a serious challenge for power systems as operators of unconventional power plants are unable to provide information about the forecasted production level and the energy generated in a given period is sometimes higher than the demand for energy in all of the power systems. Therefore, with the development of RES, a considerable amount of the generated energy is wasted. The solution is energy storage, which makes it possible to improve the management of power systems. The objective of this article is to present the concept of electricity storage in the form of the chemical energy of hydrogen (Power to Gas) in order to improve the functioning of the power system in Poland. The expected growth in the installed capacity of wind power plants will result in more periods in which excess energy will be produced. In order to avoid wasting large amounts of energy, the introduction of storage systems is necessary. An analysis of the development of wind power plants demonstrates that the Power to Gas concept can be developed in Poland, as indicated by the estimated installed capacity and the potential amount of energy to be generated. In view of the above, the excess electricity will be available for storage in the form of chemical energy of hydrogen, which
Go to article
Keywords shale gas

Abstract

Shale gas mining is mainly viewed as an industrial and economic issue. But we can also look at it from the scientific perspective. Why should we?
Go to article

Abstract

Describing the gas boiler fuel consumption as a time series gives the opportunity to use tools appropriate for the processing of such data to analyze this phenomenon. One of them are ARIMA models. The article proposes this type of model to be used for predicting monthly gas consumption in a boiler room working for heating and hot water preparation. The boiler supplies heat to a group of residential buildings. Based on the collected data, three specific models were selected for which the forecast accuracy was assessed. Calculations and analyses were carried out in the R environment using “forecast” and “ggplot2” packages. A good quality of the obtained forecasts has been demonstrated, confirming the usefulness of the proposed analytical tools. The article summary also indicates for what purposes the forecasts obtained in this way can be used. They can be useful for diagnosing the correct operation of a heat source. Registering fuel consumption at a level significantly deviating from the forecast should be a signal to immediately diagnose the boiler room and the heat supply system and to explain the reason for this difference. In this way, it is possible to detect irregularities in the operation of the heat supply system before they are detected by traditional methods. The gas consumption forecast is also useful for optimizing the financial management of the property manager responsible for the operation of the boiler room. On this basis, operating fees or financial operations with the use of periodic surplus capital may be planned.
Go to article

Abstract

The article discusses the validation process of a certain method of balancing gas contained in the pore space of rocks. The validation was based upon juxtaposition of the examination of rocks’ porosity and the effects of comminution in terms of assessing the possibility of opening the pore space. The tests were carried out for six dolomite samples taken from different areas of the ‘Polkowice-Sieroszowice’ copper mine in Poland. Prior to the grinding process, the rocks’ porosity fell in the range of 0.3-14.8%, while the volume of the open pores was included in the 0.01-0.06 cm3/g range. The grinding process was performed using an original device – the GPR analyzer. The SEM analysis revealed pores of various size and shape on the surface of the rock cores, while at the same time demonstrating lack of pores following the grinding process. The grain size distribution curves were compared with the cumulative pore volume curves of the cores before grinding. In order to confirm the argument put forward in this paper – i.e. that comminution of a rock to grains of a size comparable with the size of the rock’s pores results in the release of gas contained in the pore space – the amount of gas released as a result of the comminution process was studied. The results of gas balancing demonstrated that the pore space of the investigated dolomites was filled with gas in amounts from 3.19 cm3/kg to 45.86 cm3/kg. The obtained results of the rock material comminution to grains comparable – in terms of size – to the size of the pores of investigated rocks, along with asserting the presence of gas in the pore space of the studied dolomites, were regarded as a proof that the method of balancing gas in rocks via rock comminution is correct.
Go to article

Abstract

In the over 150 years of hydrocarbon history, the year 2017 will be one of the many similar. However, it will be a breakthrough year for liquefied natural gas. In Asia, China grew to become the leader of import growth, becoming the second world importer, overtaking even South Korea and chasing Japan. The Panama Canal for LNG trade and the “Northern Passage” was opened, so that Russian LNG supplies appeared in Europe. The year 2017 was marked by a dramatic shortening of the length of long-term concluded contracts, their shorter tenure and reduction of volumes – that is, it was another period of market commoditization of this energy resource. The article describes the current state of LNG production and trade till 2018. It focuses on natural gas production in the United States, Qatar, Australia, Russia as countries that can produce and supply LNG to the European Union. The issue of prices and the contracts terms in 2017 was analyzed in detail. The authors stress that the market is currently characterized by an oversupply and will last at least until mid–2020. Novatek, Total – Yamal-LNG project leaders have put the condensing facility at 5.5 million tons into operation. The Christophe de Margerie oil tanker was the first commercial unit to cross the route to Norway and then further to the UK without icebreakers and set a new record on the North Sea Road. In 2017, the Russian company increased its share in the European gas market from 33.1 to 34.7%. In 2017, Russia and Norway exported record volumes of „tubular” – classic natural gas to Europe (and Turkey), 194 and 122 billion m3 respectively, which is 15 and 9 billion m3 more natural gas than in 2016. The thesis was put forward that Russia would not easily give up its sphere of influence and would do everything and use various mechanisms, not only on the market, that it would simply be more expensive and economically unprofitable than natural gas. It was also emphasized that the pressure of the technically possible and economically viable redirection to European terminals of methane carriers landed in the American LNG, results in Gazprom not having a choice but to adjust its prices. The Americans, but also any other supplier (Australia?) can simply do the same and this awareness alone is enough for Russian gas to be present in Europe at a good price.
Go to article

Abstract

Recently, the search for new effective energy production solutions has been focused on the production of electricity using renewable and environmentally friendly carriers. This resulted in an increased interest in PV cells and cogeneration systems. The article looks at the main factors affecting their operational parameters against the background of the development history of subsequent generations of PV cells. Average daily solar radiation and wind velocity in Lodz were characterized. The research was done on a static and tracking system with a total peak power of 15 kWp and a 30 kW microturbine. PV panels are installed on the building of the Institute of Electrical Power Engineering of the Lodz University of Technology and they work as part of DERLab. A microturbine is inside the building. Energy measurements were carried out in 2016 giving grounds for the analysis of energy efficiency and financial analysis of the energy supply in buildings. Energy yields in the static and tracking system as well as percentage coverage of electricity from PV cells and microturbines were assessed. The distribution of monthly savings, annual savings of energy costs and the payback time of the investment costs of the systems subject to the test were determined. The research we have done allows us to say that the energy produced by follow-up modules is about 3 times greater than that generated in stationary modules. On the other hand, the annual savings of energy costs using gas micro-turbines are about 10 times higher than those of lagging panels. The analysis shows that it is possible to determine the profitability of the microturbine and photovoltaic panels use despite large financial outlays. The payback period of investment outlays is about 12 years when using the installation throughout the year.
Go to article

Abstract

In the last decade, Poland has become one of the most active markets for unconventional hydrocarbon deposits exploration. At present, there are twenty concessions for the exploration and/or discovery of reserves, including shale gas. The area covered by exploration concessions constitutes ca. 7.5% of the country’s area. Four main stages can be distinguished In the shale gas development and exploitation project: the selection and preparation of the place of development of the wells, hydraulic drilling and fracturing, exploitation (production) and marketing, exploitation suppression and land reclamation. In the paper, the concept of cost analysis of an investment project related to the exploration and development of a shale gas field/area was presented. The first two stages related to the preparatory work, carried out on the selected site, as well as drilling and hydraulic fracturing were analyzed. For economic reasons, the only rational way to make shale gas reserves available is to use horizontal drilling, either singly or in groups. The number of drilling pads covering the concession area is a fundamental determinant of the development cost of the deposit. In the paper, the results of the cost analysis of various types of reaming method with an area of 25,000,000 m2 were presented. Cost estimates were prepared for two variants: group drilling for three types of drilling pads: with three, five and seven wells and for single wells. The results show that, as the number of horizontal wells increases, the total cost of the development of the deposit is reduced. For tree-wells pad, these costs are 7% lower than in the second variant, for five-well pads they are 11% lower, and for seven-well pads they are 11.5% smaller than in the second variant. Authors, using applied methodology, indicate the direction of further research that will enable the optimization of shale gas drilling operations.
Go to article

Abstract

The paper presents the experimental study of a novel unsteady-statemembrane gas separation approach for recovery of a slow-permeant component in the membrane module with periodical retentate withdrawals. The case study consisted in the separation of binary test mixtures based on the fast-permeant main component (N2O, C2H2) and the slow-permeant impurity (1%vol. of N2) using a radial countercurrent membrane module. The novel semi-batch withdrawal technique was shown to intensify the separation process and provide up to 40% increase in separation efficiency compared to a steady-state operation of the same productivity.
Go to article

Abstract

The article compares the management of energy resources in Poland and Ukraine over the period 2000–2017. The analysis took changes in the volume of coal, oil and natural gas resources into consideration. The indicators of supplies of these fuels for Poland and Ukraine have additionally been compared with selected EU countries. In order to assess energy security of Poland and Ukraine, the changes in the primary energy consumption have been analyzed in general in first order, then the possibilities of meeting the demand for natural gas, coal and oil have been determined based on the domestic extraction of individual energy resources. Such a comparison indicates the dominant role of coal in Poland while the extraction of oil and natural gas meets the domestic demand to a greater extent in Ukraine. Over the period 2000-2017, trends in primary energy consumption were different; a 17% increase was noted in Poland, while a nearly 40% decline was noted in Ukraine. The main factors responsible for radical changes in fuel and energy management in Ukraine have been identified: military operations in the east of the country and the annexation of Crimea, demographic changes. These events had a negative impact especially on the volume of hard coal mining in Ukraine; the significant increase in imports from 5.36 to 19.14 million tons in 2011-2017 was necessary for balancing. The balance of foreign exchange for electricity was also compared. Over the past years, this comparison has been favorable for Ukraine, where the dominance of electricity exports over imports is noticeable, which generated revenues of over USD 200 million in 2017.
Go to article

Abstract

The events that took place on April 10,2010 on the Gulf of Mexico began an international debate on minimizing and materializing the risk of dangerous occurrences and accidents during the exploitation of offshore energy resources. In the aftermath of this event to ensure safe operation in European maritime areas, the European Union decided to introduce regulations throughout the entire EU. On June 12, 2013, Directive 2013/30/EU of the European Parliament and of the Council on safety of offshore oil and gas operations and amending Directive 2004/35/EC was issued. The main aim of the Directive is to reduce the occurrence of major accidents relating to offshore oil and gas operations and limits their consequences. The article is a review of provision of Directive 2013/30/UE with particular regard to requirements at the national level. What is more, the paper indicates solutions which must be introduced by July 19, 2018 in offshore companies. The incorporated solutions must include the protection of the marine environment against pollutions (especially oil spills), establish minimum conditions for safe offshore exploration and the production of oil and gas and improve the response mechanism in the eventof an accident. The paper also presents accidents which take place in oil and gas fields which are a background of necessary improvements of safety during offshore operations.
Go to article

Abstract

In this study, the effect of gas pressure on the shape and size of the AZ91 alloy powder produced by using the gas atomization method was investigated experimentally. Experiments were carried out at 820°C constant temperature in 2-mm nozzle diameter and by applying 4 different gas pressures (0.5, 1.5, 2.5 and 3.5 MPa). Argon gas was used to atomize the melt. Scanning electron microscope (SEM) to determine the shape of produced AZ91 powders, XRD, XRF and SEM-EDX analysis to determine the phases forming in the internal structures of the produced powders and the percentages of these phases and a laser measuring device for powder size analysis were used. Hardness tests were carried out to determine the mechanical properties of the produced powders. The general appearances of AZ91 alloy powders produced had general appearances of ligament, acicular, droplet, flake and spherical shape, but depending on the increase in gas pressure, the shape of the powders is seen to change mostly towards flake and spherical. It is determined that the finest powder was obtained at 820°C with 2 mm nozzle diameter at 3.5 MPa gas pressure and the powders had complex shapes in general.
Go to article

Abstract

Comparative calculations with a mathematical model designed by the authors, which takes into consideration energy transfer from gas flowing through a given channel to gas which penetrates this channel from an adjacent channel, as well as a model which omits this phenomenon, respectively, were made for the process of separating gas mixtures carried out with an inert sweep gas in the fourend capillary membrane module. Calculations were made for the process of biogas separation using a PMSP polymer membrane, relative to helium as the sweep gas. It was demonstrated that omitting the energy transfer in the mathematical model might lead to obtaining results which indicate that the capacity of the process expressed by the value of feed flux subjected to separation is by several percent higher than in reality.
Go to article

Abstract

The present paper describes a cycle, which may be applied in sewage treatment plants as a system to convert biological waste into process heat and electricity. In sludge stabilization processes anaerobic fermentation acts as the source of methane, which can be used then to generate heat and electric current in gas turbines. Products of high-temperature oxidation can be utilized in organic Rankine cycles to generate electric power. Waste heat is used for heating the fermenting biomass. Energy balance equations mentioned in the thesis: organic Rankine cycle, regenerative gas turbine engine, anaerobic sludge stabilization system.
Go to article

Abstract

Natural gas combustion was carried out in air enriched with oxygen in the amount of 25 and 29% with addition of CO2 in place of part of nitrogen. The research was carried out at different flow rates of gas and oxygen excess ratios. The concentration of CO and NOx was analyzed. It has not been proved that the increased oxygen concentration influences significantly the CO concentration. However, the addition of CO2 caused a substantial variability of CO concentration in the exhaust gas, in contrast to the concentration of NOx which decreased monotonically. Model calculations, performed with use of FactSage, indicate an increase in the concentration of CO not only for the air enriched with oxygen, but after adding CO2 too, as well
Go to article

Abstract

In recent years, changes have been made in the structure of primary energy use in the European Union In addition, a reduction in the use of primary energy has also been observed. According to the forecasts of the International Energy Agency, the European energy market will be subject to further changes in the perspective of 2040. These may include the reduction of the energy consumption and the change in the structure of the energy balance as a result pro-ecological activities. Natural gas will be the only fossil energy carrier whose role in covering the energy demand will not change. Along with the changes taking place in the European energy market, global changes can also be observed. The EU Member States will continue to strive to diversify natural gas supplies. One of the main elements of diversification of natural gas supplies is the use of LNG regasification terminals. The reasons for that include the increasing production of natural gas, particularly in the case of unconventional deposits, the ongoing development of liquefaction terminals, and, as a consequence, an increase in the LNG supply in the global market. The article presents the utilization of regasification terminals in the EU Member States and plans for the development of LNG terminals. Europe has the opportunity to import natural gas through LNG terminals. However, until now, these have been used to a limited extent. This may indicate that in addition to diversification tasks, terminals can act as a safeguard against interruptions in gas supplies.
Go to article

Abstract

Traditional fluid mechanics edifies the indifference between liquid and gas flows as long as certain similarity parameters – most prominently the Reynolds number – are matched. This may or may not be the case for flows in nano- or microdevices. The customary continuum, Navier-Stokes modelling is ordinarily applicable for both air and water flowing in macrodevices. Even for common fluids such as air or water, such modelling bound to fail at sufficiently small scales, but the onset for such failure is different for the two forms of matter. Moreover, when the no-slip, quasi-equilibrium Navier – Stokes system is no longer applicable, the alternative modelling schemes are different for gases and liquids. For dilute gases, statistical methods are applied and the Boltzmann equation is the cornerstone of such approaches. For liquid flows, the dense nature of the matter precludes the use of the kinetic theory of gases, and numerically intensive molecular dynamics simulations are the only alternative rooted in first principles. The present article discusses the above issues, emphasizing the differences between liquid and gas transport at the microscale and the physical phenomena unique to liquid flows in minute devices.
Go to article

Abstract

The purpose of the work was initial modification of the construction of a commercially produced heat exchanger – recuperator with CFD (computational fluid dynamics) methods, based on designs and process parameters which were provided. Uniformity of gas distribution in the space between the tubes of the apparatus as well as the pressure drop in it were taken as modification criteria. Uniformity of the gas velocity field between the tubes of the heat exchanger should cause equalization of the local individual heat transfer coefficient values and temperature value. Changes of the apparatus construction which do not worsen work conditions of the equipment, but cause savings of constructional materials (elimination or shortening some parts of the apparatus) were taken into consideration.
Go to article

Abstract

This paper presents studies carried out in a pilot-scale plant for recovery of waste heat from a flue gas which has been built in a lignite-fired power plant. The purpose of the studies was to check the operation of the heat recovery system in a pilot scale, while the purpose of the plant was recovery of waste heat from the flue gas in the form of hot water with a temperature of approx. 90 °C. The main part of the test rig was a condensing heat exchanger designed and built on the basis of laboratory tests conducted by the authors of this paper. Tests conducted on the pilot-scale plant concerned the thermal and flow parameters of the condensing heat exchanger as well as the impact of the volumetric flow rate of the flue gas and the cooling water on the heat flux recovered. Results show that the system with a condensing heat exchanger for recovery of low-temperature waste heat from the flue gas enables the recovery of much higher heat flux as compared with conventional systems without a condensing heat exchanger.
Go to article

Abstract

This paper analyses the real behaviour of the fluid in the channels of a three-end membrane module. The commonly accepted mathematical model of membrane separation of gas mixtures in such modules assumes a plug flow of fluid through the feed channel and perfect mixing in the permeate channel. This article discusses the admissibility of accepting such an assumption regarding the fluid behaviour in the permeate channel. Throughout analysis of the values of the Péclet number criterion, it has been demonstrated that in the industrial processes of membrane gas separation, the necessary conditions for the perfect mixing in the permeate channel are not met. Then, CFD simulations were performed in order to establish the real fluid behaviour in this channel. It was proved that in the permeate channel the fluid movement corresponds to the plug flow, with the concentration differences at both ends of the module being insignificant. In view of the observations made, the admissibility of concentration stability assumptions in the mathematical models for the permeate channel was discussed.
Go to article

Abstract

This paper presents the findings of a study of gas emissivity and the volumetric gas flow rate from a patented modified cellulose mix used in production of disposable sand casting moulds. The modified cellulose mix with such additives as expanded perlite, expanded vermiculite and microspheres was used as the study material. The results for gas emissivity and the gas flow rate for the modified cellulose mix were compared with the gas emissivity of the commercial material used in gating systems in disposable sand casting moulds. The results have shown that the modified cellulose mix is characterized by a lower gas emissivity by as much as 50% and lower gas flow rate per unit mass during the process of thermal degradation at the temperature of 900°C, compared to the commercial mix. It was also noted that the amount of microspheres considerably affected the amount of gas produced.
Go to article

Abstract

This study examines the pyrolysis of a single cylindrical wood particle using particle image velocimetry (PIV). The pyrolysis was conducted inside a pyrolysis reactor designed for this purpose. The experimental setup presented in this paper is capable of effectively characterizing the intensity of pyrolysis based on velocity distribution in the vicinity of wood particles. The results of the gas velocity distribution show that evaporation of moisture has as a major impact on the formation of the gas cushion as devolatilization.
Go to article

Abstract

Energy from different sources is fundamental to the economy of each country. Bearing in mind the limited reserves of non-renewable energy sources and the fact that their production from new deposits is becoming less economically viable, attention is paid to alternative energy sources, particularly those that are readily available or require no substantial financial investment. One possible solution may be to generate hydrogen, which will then be used for heat (energy) production using other methods. At the same time, these processes will be characterized by low emission levels compared to conventional energy sources. In recent years, more and more emphasis has been placed on the use of clean energy from renewable sources. New, more technically and economically efficient technologies are being developed. The energy use worldwide comes mostly from fossil fuel processing. It can be observed that the share of RES in global production is growing every year. At the end of the 1990s, the share of renewable energy sources was at 6–7%. Global trends indicate the increasing demand for renewable energy due to its form. Global hydrogen resources are practically inexhaustible, but the problem is its availability in molecular form. The article analyzed the use of hydrogen as a fuel. The basic problem is the inexpensive and easy extraction of hydrogen from its compounds; attention has been paid to water, which can easily be electrolytically decomposed to produce oxygen and hydrogen. Hydrogen generated by electrolysis can be stored, but due to its physicochemical properties, it is a costly process; therefore, a decision was made that it is better to store it with natural gas or use it for further reaction. In addition, hydrogen can be used as a substrate for binding and converting the increasingly problematic carbon dioxide, thus reducing its content in the atmosphere.
Go to article

Abstract

The article deals with the gas development of the geopolymer binder system hardened by heat and provides the comparison with organic binder systems. The GEOPOL® W technology is completely inorganic binder system, based on water. This fact allow that the gas generated during pouring is based on water vapour only. No dangerous emissions, fumes or unpleasant odours are developed. The calculated amount of water vapour generated from GEOPOL® W sand mixture is 1.9 cm3/g. The measured volume of gas for GEOPOL® W is 4.3 cm3/g. The measurement of gas evolution proves that the inorganic binder system GEOPOL® W generates very low volume of gas (water vapour) in comparison with PUR cold box amine and Croning. The amount of gas is several times lower than PUR cold box amine (3.7x) and Croning (4.2x). The experiment results are consistent with the literature sources. The difference between the calculated and the measured gas volume is justified by the reverse moisture absorption from the air after dehydration during storing and preparing the sand samples. Minimal generated volumes of gas/water vapour brings, mainly as was stated no dangerous emissions, also the following advantages: minimal risk of bubble defects creation, the good castings without defects, reduced costs for exhaust air treatment, no condensates on dies, reduced costs for cleaning.
Go to article

Abstract

The aim of this work was to determine the influence of liming on the process of pyrolysis. Three samples of sludge from two wastewater treatment plants were selected for this study on pyrolysis: sludge without liming and limed sludge from the Central Wastewater Treatment Plant in Ostrava and sludge from the Wastewater Treatment Plant in Sviadnov. The samples had different content of calcite (CaCO3). The limed sludge contained 7% of CaCO3, sludge without liming 3.8% and sludge without liming from WWTP Sviadnov contained 0.5% of calcite. The results of laboratory pyrolysis proved that limed sludge released the maximum amount of carbon - 55.46 %, while sludge without liming from WWTP Sviadnov released only 48.92%. Calcite produces during its decomposition CaO and the product influences the pyrolysis process because it supports cracking of volatile organic compounds
Go to article

Abstract

This paper presents the results of research regarding measurements of the values of pressure drops during horizontal flow of gas-liquid and gas-liquid-liquid mixture through 180o pipe bends. The conducted insightful analysis and assessment during multi-phase flow in pipe bends has enabled to develop a new method for determination of their values. This new method for determining pressure drops ensures higher precision of calculation in comparison to other methods presented in literature and can be applied for calculation of these parameters during multi-phase flows in pipe bends with various geometries.
Go to article

This page uses 'cookies'. Learn more