Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 3
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

Skuteczna ochrona (wzmocnienie obudowy) skrzyżowania ściana–chodnik zapewnia ciągłość cyklu produkcyjnego, a mianowicie szybkie przesunięcie przenośnika ścianowego do czoła ściany. Stosowanie niskiego bądź wysokiego kotwienia jako elementu wzmacniającego obudowę podporową skrzyżowania ściana-chodnik, pozwala na wyeliminowanie tradycyjnych sposobów utrzymania skrzyżowania ściana–chodnik, a tym samym pozwala na efektywne wykorzystanie wysokiej wydajności nowoczesnych kompleksów ścianowych. W artykule przedstawiono długoletnie doświadczenia dołowe kopalni Knurów–Szczygłowice w zakresie stosowania, dla skutecznego utrzymania skrzyżowania ściana-chodnik, obudowy przykotwionej do górotworu przy pomocy dwóch par kotwi, wykazując pełną przydatność techniczną i ekonomiczną takiego sposobu wzmocnienia obudowy. W artykule zwrócono również uwagę na bezpieczeństwo pracy oraz na coraz powszechniejsze wykorzystanie badań endoskopowych przy określeniu zasięgu strefy spękań rzutujące bezpośrednio na właściwy dobór odpowiedniej liczby, nośności oraz długości stosowanych kotew. Przeprowadzone badania dołowe zasięgu strefy spękań i rozwarstwień stropu (endoskopowe i przy pomocy rozwarstwieniomierzy linkowych) przed frontem czynnej ściany, a także przeprowadzone badania laboratoryjne (stanowiskowe) pozwoliły określić współczynnik bezpieczeństwa utrzymania skrzyżowania ściana–chodnik rzutujący bezpośrednio na konieczność zabudowy dodatkowego wzmocnienia. Wartość współczynnika bezpieczeństwa Sbść-ch większa od 1 jest korzystna i bezpieczna, a wartość mniejsza lub równa 1 może prowadzić do znacznego pogorszenia warunków utrzymania skrzyżowania w obudowie podporowej przykotwionej.
Przejdź do artykułu

Abstrakt

Nominal strength reduction in cross ply laminates of [0/90]2s is observed in tensile tests of glass fiber composite laminates having central open hole of diameters varying from 2 to 10 mm. This is well known as the size effect. The extended finite element method (XFEM) is implemented to simulate the fracture process and size effect (scale effect) in the glass fiber reinforced polymer laminates weakened by holes or notches. The analysis shows that XFEM results are in good agreement with the experimental results specifying nominal strength and in good agreement with the analytical results based on the cohesive zone model specifying crack opening displacement and the fracture process zone length.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji