Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

Tungsten heavy alloys comprising tungsten, nickel and ferrous were modified, where molybdenum was added in varying weight proportions keeping the ratio of Ni: Fe (8:2) constant. The powders were mixed in a high-energy ball mill and were further fabricated using the spark plasma sintering (SPS) method at a peak temperature of 1000°C with heating rate of 100°C/min. The details of the microstructure and mechanical properties of these various alloy compositions were studied. With the increasing weight composition of the Mo in the alloy, the relative density of the alloy increased with a significant improvement in all the mechanical properties. The yield strength (YS), ultimate tensile strength (UTS) and hardness improved significantly with increase in the proportion of Mo; however, a reduction in elongation percentage was observed. The maximum strength of 1250 MPa UTS was observed in the alloy with a Mo proportion of 24%. The heavy alloy unmixed with Mo has shown distinct white and grey regions, where white (W) grain is due to tungsten and grey region is a combinatorial effect of Ni and Fe. Upon addition of Mo, the white and gray phase differences started to minimize resulting in deep gray and black ‘C’-phase structures because of homogenization of the alloy. The main fracture mode found during this investigation in the alloys was inter-granular mode.
Go to article

Abstract

The article presents the results of research concerning AlCu4MgSi alloy ingots produced using horizontal continuous casting process under variable conditions of casting speed and cooling liquid flow through the crystallizer. The mechanical properties and structure of the obtained ingots were correlated with the process parameters. On the basis of the obtained results, it has been shown that depending on the cooling rate and the intensity of convection during solidification, significant differences in the mechanical properties and structure and of the ingots can occur. The research has shown that, as the casting speed and the flow rate of the cooling liquid increase, the hardness of the test samples decreases, while their elongation increases, which is related to the increase of the average grain size. Also, the morphology of the intermetallic phases precipitations lattice, as well as the centerline porosity and dendrite expansion, significantly affect the tensile strength and fracture mechanism of the tested ingots.
Go to article

Abstract

The paper presents the results of the Ti10V2Fe3Al alloy crack resistance assessment using the Rice’s J-integral technique as a function of morphology and volume fraction of α-phase precipitates. Titanium alloys characterized by the two-phase structure α + β are an interesting alternative to classic steels with high mechanical properties. Despite the high manufacturing costs and processing of titanium alloys, they are used in heavily loaded constructions in the aerospace industry due to its high strength to density ratio. The literature lacks detailed data on the influence of microstructure and, in particular, the morphology of α phase precipitates on fracture toughness in high strength titanium alloys. In the following work an attempt was made to determine the correlation between the microstructure and resistance to cracking in the Ti10V2Fe3Al alloy.
Go to article

This page uses 'cookies'. Learn more