Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 27
items per page: 25 50 75
Sort by:

Abstract

The purpose of this study is to describe the current state of tidewater glaciers in Svalbard as an extension of the inventory of Hagen et al. (1993). The ice masses of Svalbard cover an area of ca 36 600 km2 and more than 60% of the glaciated areas are glaciers which terminate in the sea at calving ice-cliffs. Recent data on the geometry of glacier tongues, their flow velocities and front position changes have been extracted from ASTER images acquired from 2000-2006 using automated methods of satellite image analysis. Analyses have shown that 163 Svalbard glaciers are of tidewater type (having contact with the ocean) and the total length of their calving ice-cliffs is 860 km . When compared with the previous inventory, 14 glaciers retreated from the ocean to the land over a 30-40 year period. Eleven formerly land-based glaciers now terminate in the sea. A new method of assessing the dynamic state of glaciers, based on patterns of frontal crevassing, has been developed. Tidewater glacier termini are divided into four groups on the basis of differences in crevasse patterns and flow velocity: (1) very slow or stagnant glaciers, (2) slow-flowing glaciers, (3) fast-flowing glaciers, (4) surging glaciers (in the active phase) and fast ice streams. This classification has enabled us to estimate total calving flux from Svalbard glaciers with an accuracy appreciably higher than that of previous attempts. Mass loss due to calving from the whole archipelago (excluding Kvitřya) is estimated to be 5.0-8.4 km3 yr-1 (water equivalent - w.e.), with a mean value 6.75 ± 1.7 km3 yr-1 (w.e.). Thus, ablation due to calving contributes as much as 17-25% (with a mean value 21%) to the overall mass loss from Svalbard glaciers. By implication, the contribution of Svalbard iceberg flux to sea-level rise amounts to ca 0.02 mm yr-1. Also calving flux in the Arctic has been considered and the highest annual specific mass balance attributable to iceberg calving has been found for Svalbard.
Go to article

Abstract

Research in Hornsund (SW Spitsbergen) aimed to determine time distribution of heat flux in various soils of Arctic periglacial zone in spring and summer. Typical soils were analysed: tundra gleyey cryogenic soil (Pergelic Cryaquent), tundra peaty soil (Pergelic Histosot) and arctic desert soil (Pergelic Cryorthent). Research sites were located in low plains not covered with ice, near a sea, at 7—13 m a.s.l. Heat flux in soils was measured and recorded automatically every 60 s throughout a whole observation period and concurrently at three sites. In spring and summer intensive heat accumulation was observed in all examined soils. Independently on the weather, a cryogenic gleyey soil received greatest heat throughout a day. Environmental conditions have distinct influence on heat resources in soils.
Go to article

Abstract

The article presents the results of studies on the rate of zinc evaporation in the atmosphere of helium and carbon monoxide (II) carried out with the thermogravimetric method. The estimated values of zinc streams were compared with the values determined based on theoretical relationships.
Go to article

Abstract

This paper presents an analytical model of a three-phase axial flux coreless generator excited by permanent magnets, with special focus on determining the model pa- rameters. An important aspect of this model is the derivation of a coefficient that corrects the flux on the inside and outside edges of the magnets. The obtained parameters are ver- ified by performing field analyses and measurements. A comparison of the results show satisfactory convergence, which confirms the accuracy of the proposed analytical model.
Go to article

Abstract

The paper discusses in detail the construction of the Core Less Axial Flux Permanent Magnet generator simulation model. The model has been prepared in such a way that full compatibility with the elements of the SimPowerSystem library of the Matlab/Simulink package is preserved, which allows easy use of the presented simulation model for testing the work of the generator as part of a larger system. The parameters used in the model come from the MES 3D calculations performed in the Ansys/Maxwell software, for a machine prototype with a rated power of 2.8 kW, which was then used to experimentally verify the correct operation of the presented model of machine.
Go to article

Abstract

Among all control methods for induction motor drives, Direct Torque Control (DTC) seems to be particularly interesting being independent of machine rotor parameters and requiring no speed or position sensors. The DTC scheme is characterized by the absence of PI regulators, coordinate transformations, current regulators and PWM signals generators. In spite of its simplicity, DTC allows a good torque control in steady state and transient operating conditions to be obtained. However, the presence of hysteresis controllers for flux and torque could determine torque and current ripple and variable switching frequency operation for the voltage source inverter. This paper is aimed to analyze DTC principles, the strategies and the problems related to its implementation and the possible improvements.
Go to article

Abstract

The buoyant hypopycnal flow of brackish water and suspended sediment transport and settling were studied in two sub-polar fjords: the glacial Kongsfjörden and the outwash (non-glacial contact) Adventfjörden, Svalbard . The data presented indicates faster water mixing on the tidal flat in comparison to the englacial runoff, which leads to faster horizontal density gradients decreases in the non-glaciated fjord. The fast settling of particles in the narrow zone of the steep slope at the edge of the tidal flat leads to the removal of 25% of the surface suspended sediment. The rapid settling is due to increasing salinity, decreasing velocity, and flocculation of fine particles. The fast settling of suspended particulate matter (SPM) in the tidal flat area causes sediment redeposition and resuspension followed by sediment transport along the bottom with hyperpycnal flows. This leads to grain sorting in the fjord head. In contrast, at the glacier front, SPM is transported farther into the fjord, where tidal pumping and water mixing lead to the removal of 71% of total SPM. The fjords investigated represent two different sedimentological regimes. In the glaciated Kongsfjörden, the buoyant hypopycnal flow of brackish water is the main sediment transporting factor. In the non-glacial Adventfjörden, hyperpycnal flows transport sediment along the bottom.
Go to article

Abstract

The Halbach array structure rotor of the aero motor can satisfy the requirements of high power density and high air-gap flux for aeronautical motors. The size parameters of the rotor are determined by the power rating of the motor based on an analytic method. Producing a Halbach array structure is difficult. Comparison and analysis of the structure of the aero motor showthat the overall structure of the rotor adopts a three-axial-section classic Halbach-array hollow structure, and the rotor magnetic steel adopts a discrete structure of 4 blocks per pole and a single 45◦ magnetisation mode, which reduces the processing difficulty of the rotor magnetic steel. The finite element method was used to analyse the magnetic flux density distribution of the aeronautical motor under various working conditions. The results show that the motor can produce uniform air-gap flux density at various working conditions and present good sinusoidal periodicity. Furthermore, the axial segment did not produce obvious magnetic flux leakage. Finally, considering the eddy current loss of the stator under the rated power-generation condition with high-frequency magnetic field, we conducted coupling analysis of electromagnetic and heat flows to verify that the thermal characteristics of the rotor magnetic steel material could meet the requirements for the aero motor.
Go to article

Abstract

Experimental investigation of natural convection heat transfer in heated vertical tubes dissipating heat from the internal surface is presented. The test section is electrically heated and constant wall heat flux is maintained both circumferentially and axially. Four different test sections are taken having 45 mm internal diameter and 3.8 mm thickness. The length of the test sections are 450 mm, 550 mm, 700 mm and 850 mm. Ratios of length to diameter of the test sections are taken as 10, 12.22, 15.56, and 18.89. Wall heat fluxes are maintained at 250–3341 W/m2. Experiments are also conducted on channels with internal rings of rectangular section placed at various distances. Thickness of the rings are taken as 4 mm, 6 mm, and 8 mm. The step size of the rings varies from 75 mm to 283.3 mm. The nondimensional ring spacing, expressed as the ratios of step size to diameter, are taken from 1.67 to 6.29 and the non-dimensional ring thickness, expressed as the ratios of ring thickness to diameter are taken from 0.089 to 0.178. The ratios of ring spacing to its thickness are taken as 9.375 to 70.82. The effects of various parameters such as length to diameter ratio, wall heat flux, ring thickness and ring spacing on local steady-state heat transfer behavior are observed. From the experimental data a correlation is developed for average Nusselt number and modified Rayleigh number. Another correlation is also developed for modified Rayleigh number and modified Reynolds number. These correlations can predict the data accurately within ±10% error.
Go to article

Abstract

The paper presents heat transfer calculation results concerning a control rod of Forsmark Nuclear Power Plant (NPP). The part of the control rod, which is the object of interest, is surrounded by a mixing region of hot and cold flows and, as a consequence, is subjected to thermal fluctuations. The paper describes a numerical test which validates the method based on the solution of the inverse heat conduction problem (IHCP). The comparison of the results achieved by two methods, computational fluid dynamics (CFD) simulations and IHCP, including a description of the IHCP method used in the calculation process, shows a very good agreement between the methods.
Go to article

Abstract

The paper presents analytical and numerical model calculation results of the temperature distribution along the thermal flow meter. Results show a very good conformity between numerical and analytical model. Apart from the calculation results the experimental investigations are presented. The author performed the test where a temperature of duct wall surface was measured. Therelation between mass flow rate in terms of the duct surface temperature difference was developed.
Go to article

Abstract

The paper presents the solution to a problem of determining the heat flux density and the heat transfer coefficient, on the basis of temperature measurement at three locations in the flat sensor, with the assumption that the heat conductivity of the sensor material is temperature dependent. Three different methods for determining the heat flux and heat transfer coefficient, with their practical applications, are presented. The uncertainties in the determined values are also estimated.
Go to article

Abstract

The tubular type instrument (flux tube) was developed to identify boundary conditions in water wall tubes of steam boilers. The meter is constructed from a short length of eccentric tube containing four thermocouples on the fire side below the inner and outer surfaces of the tube. The fifth thermocouple is located at the rear of the tube on the casing side of the water-wall tube. The boundary conditions on the outer and inner surfaces of the water flux-tube are determined based on temperature measurements at the interior locations. Four K-type sheathed thermocouples of 1 mm in diameter, are inserted into holes, which are parallel to the tube axis. The non-linear least squares problem is solved numerically using the Levenberg-Marquardt method. The heat transfer conditions in adjacent boiler tubes have no impact on the temperature distribution in the flux tubes.
Go to article

Abstract

The paper presents the idea of a system for controlling the movement of a flowmeter for air velocity profile measurement. In such a system, due to massive amount of data and limitations of the Data Acquisition Equipment, it is necessary to use moveable sensors. The flowmeter sensor is moved with the use of a linear module with a stepper motor and a tooth-belt drive. The location and speed of the sensor are controlled by a program based on the idea of virtual instrument. The proposed structure allows the user to control operation of the stand and provides automatic measurement. A wide range of velocity and step increments of the stepper motor drive, and flexibility of the virtual instrument software, allow one to create effective measurement systems ensuring sufficiently precise location with optimal time duration of measurement. It is shown that the linear module with tooth-belt is an effective alternative for similar modules with micro-screw drives.
Go to article

Abstract

This paper presents a predictive torque and flux control algorithm for the synchronous reluctance machine. The algorithm performs a voltage space phasor pre-selection, followed by the computation of the switching instants for the optimum switching space phasors, with the advantages of inherently constant switching frequency and time equidistant implementation on a DSP based system. The criteria used to choose the appropriate voltage space phasor depend on the state of the machine and the deviations of torque and flux at the end of the cycle. The model of the machine has been developed on a d-q frame of coordinates attached to the rotor and takes into account the magnetic saturation in both d-q axes and the cross saturation phenomenon between both axes. Therefore, a very good approximation of this effect is achieved and the performance of the machine is improved. Several simulations and experimental results using a DSP and a commercially available machine show the validity of the proposed control scheme.
Go to article

Abstract

The pool boiling characteristics of dilute dispersions of alumina, zirconia and silica nanoparticles in water were studied. These dispersions are known as nanofluids. Consistently with other nanofluid studies, it was found that a significant enhancement in Critical Heat Flux (CHF) can be achieved at modest nanoparticle concentrations (<0.1% by volume). Buildup of a porous layer of nanoparticles on the heater surface occurred during nucleate boiling. This layer significantly improves the surface wettability, as shown by a reduction of the static contact angle on the nanofluid-boiled surfaces compared with the pure-water-boiled surfaces. CHF theories support the nexus between CHF enhancement and surface wettability changes. This represents a first important step towards identification of a plausible mechanism for boiling CHF enhancement in nanofluids.
Go to article

Abstract

This paper presents novel bi-converter structure to supply the Doubly Fed Induction Machine (DFIM). Two Voltage Source Inverters (VSI) feed the stator and rotor windings. The outputs of two VSI are combined electro-mechanically in the machine and, as a result, novel features can be obtained. For example, for high power drive applications, this configuration use two inverters dimensioned for a half of the DFIM power. A new Dual-Direct Torque Control scheme is developed with flux model of DFIM. Two Switching Tables (ST) linked to VSI are defined for stator and rotor flux vector control. Experimental and simulation results confirm good dynamic behaviour in the four quadrants of the speed-torque plane. Moreover, experimental results show the correct flux vector control behaviour and speed tracking performances.
Go to article

Abstract

The paper presents a solution for sensorless field oriented control (FOC) system for five-phase induction motors with improved rotor flux pattern. In order to obtain the advantages of a third harmonic injection with a quasi-trapezoidal flux shape, two vector models, α1–β1 and α3–β3, were transformed into d1–q1, d3–q3 rotating frames, which correlate to the 1st and 3rd harmonic plane respectively. A linearization approach of the dual machine model in d–q coordinate frames is proposed by introducing a new additional variable “x” which is proportional to the electromagnetic torque. By applying the static feedback control law, a dual mathematical model of the five-phase induction motor was linearized to synthesize a control system in which the electromagnetic torque and the rotor flux can be independently controlled. The results shows the air gap flux shape in steady as well transient states under various load conditions. Moreover, the implemented control structure acquires fault tolerant properties and leads to possible emergency running with limited operation capabilities. The fault-tolerant capability of the analyzed machine was guaranteed by a special implemented control system with a dedicated speed observer, which is insensitive to open-phase fault situation. The experimental tests have been performed with single and double-open stator phase fault. A torque measurement was implemented to present the mechanical characteristics under healthy and faulty conditions of the drive system.
Go to article

Abstract

A new method for measurement of local heat flux to water-walls of steam boilers was developed. A flux meter tube was made from an eccentric tube of short length to which two longitudinal fins were attached. These two fins prevent the boiler setting from heating by a thermal radiation from the combustion chamber. The fins are not welded to the adjacent water-wall tubes, so that the temperature distribution in the heat flux meter is not influenced by neighbouring water-wall tubes. The thickness of the heat flux tube wall is larger on the fireside to obtain a greater distance between the thermocouples located inside the wall which increases the accuracy of heat flux determination. Based on the temperature measurements at selected points inside the heat flux meter, the heat flux absorbed by the water-wall, heat transfer coefficient on the inner tube surface and temperature of the water-steam mixture was determined.
Go to article

Abstract

In this work we investigate the present capabilities of computational fluid dynamics for wall boiling. The computational model used combines the Euler/Euler two-phase flow description with heat flux partitioning. This kind of modeling was previously applied to boiling water under high pressure conditions relevant to nuclear power systems. Similar conditions in terms of the relevant non-dimensional numbers have been realized in the DEBORA tests using dichlorodifluoromethane (R12) as the working fluid. This facilitated measurements of radial profiles for gas volume fraction, gas velocity, bubble size and liquid temperature as well as axial profiles of wall temperature. After reviewing the theoretical and experimental basis of correlations used in the ANSYS CFX model used for the calculations, we give a careful assessment of the necessary recalibrations to describe the DEBORA tests. The basic CFX model is validated by a detailed comparison to the experimental data for two selected test cases. Simulations with a single set of calibrated parameters are found to give reasonable quantitative agreement with the data for several tests within a certain range of conditions and reproduce the observed tendencies correctly. Several model refinements are then presented each of which is designed to improve one of the remaining deviations between simulation and measurements. Specifically we consider a homogeneous MUSIG model for the bubble size, modified bubble forces, a wall function for turbulent boiling flow and a partial slip boundary condition for the liquid phase. Finally, needs for further model developments are identified and promising directions discussed.
Go to article

Abstract

High heat flux removal are important issue in many perspective applications such as computer chips, laser diode arrays, or boilers working on supercritical parameters. Electronic microchips constructed nowadays are model example of high heat flux removal, where the cooling system have to maintain the temperature below 358 K and take heat flux up to 300 W/cm2. One of the most efficient methods of microchips cooling turns out to be the spray cooling method. Review of installations has been accomplished for removal at high heat flux with liquid sprays. In the article are shown high flux removal characteristic and dependences, boiling critical parameters, as also the numerical method of spray cooling analysis.
Go to article

Abstract

The work is a continuation of research on the use water mist cooling in order to increase efficiency of die-casting aluminum alloys. The paper presents results of research and analysis process, spraying water and generated a stream of water mist, the effect of the type of nozzle, the nozzle size and shape of the emitting of the water mist on the wall surface of casting die on the microstructure and geometry of water mist stream and cooling efficiency. Tests were used to perform high-speed camera to record video in the visible and infrared camera. Results were used to develop a computerized image analysis and statistical analysis. The study showed that there are statistical relationships between water and air flow and geometry of the nozzle and nozzle emitting a stream of microstructure parameters of water mist and heat the incoming stream. These relationships are described mathematical models that allow you to control the generating of adequate stream of water mist and a further consequence, the cooling efficiency of casting die.
Go to article

This page uses 'cookies'. Learn more