Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:

Abstract

The problem of optimally controlling a Wiener process until it leaves an interval (a; b) for the first time is considered in the case when the infinitesimal parameters of the process are random. When a = ��1, the exact optimal control is derived by solving the appropriate system of differential equations, whereas a very precise approximate solution in the form of a polynomial is obtained in the two-barrier case.
Go to article

This page uses 'cookies'. Learn more