Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

The paper presents local dynamic approach to integration of an ensemble of predictors. The classical fusing of many predictor results takes into account all units and takes the weighted average of the results of all units forming the ensemble. This paper proposes different approach. The prediction of time series for the next day is done here by only one member of an ensemble, which was the best in the learning stage for the input vector, closest to the input data actually applied. Thanks to such arrangement we avoid the situation in which the worst unit reduces the accuracy of the whole ensemble. This way we obtain an increased level of statistical forecasting accuracy, since each task is performed by the best suited predictor. Moreover, such arrangement of integration allows for using units of very different quality without decreasing the quality of final prediction. The numerical experiments performed for forecasting the next input, the average PM10 pollution and forecasting the 24-element vector of hourly load of the power system have confirmed the superiority of the presented approach. All quality measures of forecast have been significantly improved.
Go to article

Abstract

Malignant melanomas are the most deadly type of skin cancer, yet detected early have high chances of successful treatment. In the last twenty years, the interest in automatic recognition and classification of melanoma dynamically increased, partly because of appearing public datasets with dermatoscopic images of skin lesions. Automated computer-aided skin cancer detection in dermatoscopic images is a very challenging task due to uneven sizes of datasets, huge intra-class variation with small interclass variation, and the existence of many artifacts in the images. One of the most recognized methods of melanoma diagnosis is the ABCD method. In the paper, we propose an extended version of this method and an intelligent decision support system based on neural networks that uses its results in the form of hand-crafted features. Automatic determination of the skin features with the ABCD method is difficult due to the large diversity of images of various quality, the existence of hair, different markers and other obstacles. Therefore, it was necessary to apply advanced methods of pre-processing the images. The proposed system is an ensemble of ten neural networks working in parallel, and one network using their results to generate a final decision. This system structure enables to increase the efficiency of its operation by several percentage points compared with a single neural network. The proposed system is trained on over 5000 and tested afterwards on 200 skin moles. The presented system can be used as a decision support system for primary care physicians, as a system capable of self-examination of the skin with a dermatoscope and also as an important tool to improve biopsy decision making.
Go to article

This page uses 'cookies'. Learn more