Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

A pair of fast competitive reactions, neutralization and 2,2-dimetoxypropane (DMP) hydrolysis, has been applied do study mass transfer and micromixing in a T 50 Ultra-Turrax® - IKA rotor-stator device. In experiments the dispersed organic phase containing p-Toluenesulfonic acid (pTsOH) dissolved in diisopropyl ether, whereas the continuous phase was represented by the aqueous solution of sodium hydroxide, 2,2-dimetoxypropane (DMP) and ethanol. During mixing a fast mass transfer of a solute (pTsOH) from organic phase droplets, which were shrinking due to fast dissolution of the organic solvent, was followed by micromixing and chemical reactions in the continuous phase. Measured hydrolysis yields were applied to express effects of mixing on the course of chemical reactions. Modeling was based on application of models describing drop breakup, mass transfer in the liquid-liquid system and micromixing. Combined effects of mass transfer and drop breakage on drop population were expressed using the population balance equations. The model has been used to interpret experimental results, in particular to identify the efficiency of mixing.
Go to article

Abstract

Energetic efficiency depicting the fraction of energy dissipation rate used to perform processes of drop breakup and mass transfer in two-phase, liquid-liquid systems is considered. Results of experiments carried out earlier in two types of high-shear mixers: an in-line rotor-stator mixer and a batch rotor-stator mixer, have been applied to identify and compare the efficiency of drop breakage and mass transfer in both types of mixers. The applied method is based on experimental determination of both: the product distribution of chemical test reactions and the drop size distributions. Experimental data are interpreted using a multifractal model of turbulence for drop breakage and the model by Favelukis and Lavrenteva for mass transfer. Results show that the energetic efficiency of the in-line mixer is higher than that of the batch mixer; two stator geometries were considered in the case of the batch mixer and the energetic efficiency of the device equipped with a standard emulsor screen (SES) was higher than the efficiency of the mixer equipped with a general purpose disintegrating head (GPDH) for drop breakup but smaller for mass transfer.
Go to article

Abstract

Effects of mixing on the course of fast chemical reactions are relatively well understood, especially in homogeneous systems. This enables to design and operate chemical reactors with the goal to achieve a high yield of a desired product and use systems of complex reactions as a chemical probe (chemical test reactions) to identify progress of mixing and quality of mixture. Recently, a number of studies have focused on the application of chemical test reactions to identify energy efficiency of mixing, being a convenient way of comparing mixers and reactors in terms of their mixing efficiency. This review offers a presentation of chemical test reactions available in the literature and methods of applications of test reactions to identify the energy efficiency of mixing. Also methods to assess the extent of micromixing by measuring product distribution or segregation index, and to determine the time constant for mixing are presented for single phase homogeneous systems and two-phase liquid-liquid systems.
Go to article

This page uses 'cookies'. Learn more