Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

In this paper a mathematical model enabling the analysis of the heat-flow phenomena occurring in the waterwalls of the combustion chambers of the boilers for supercritical parameters is proposed. It is a one-dimensional model with distributed parameters based on the solution of equations describing the conservation laws of mass, momentum, and energy. The purpose of the numerical calculations is to determine the distributions of the fluid enthalpy and the temperature of the waterwall pipes. This temperature should not exceed the calculation temperature for particular category of steel. The derived differential equations are solved using two methods: with the use of the implicit difference scheme, in which the mesh with regular nodes was applied, and using the Runge-Kutta method. The temperature distribution of the waterwall pipes is determined using the CFD. All thermophysical properties of the fluid and waterwall pipes are computed in real-time. The time-spatial heat transfer coefficient distribution is also computed in the on-line mode. The heat calculations for the combustion chamber are carried out with the use of the zone method, thus the thermal load distribution of the waterwalls is known. The time needed for the computations is of great importance when taking into consideration calculations carried out in the on-line mode. A correctly solved one-dimensional model ensures the appropriately short computational time.
Go to article

Abstract

In this article we construct a finite-difference scheme for the three-dimensional equations of the atmospheric boundary layer. The solvability of the mathematical model is proved and quality properties of the solutions are studied. A priori estimates are derived for the solution of the differential equations. The mathematical questions of the difference schemes for the equations of the atmospheric boundary layer are studied. Nonlinear terms are approximated such that the integral term of the identity vanishes when it is scalar multiplied. This property of the difference scheme is formulated as a lemma. Main a priori estimates for the solution of the difference problem are derived. Approximation properties are investigated and the theorem of convergence of the difference solution to the solution of the differential problem is proved.
Go to article

This page uses 'cookies'. Learn more