Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 13
items per page: 25 50 75
Sort by:

Abstract

Control of the technological processes of coal enrichment takes place in the presence of wide disturbances. Thus, one of the basic tasks of the coal enrichment process control systems is the stabilization of coal quality parameters at a preset level. An important problem is the choice of the controller which is robust for a variety of disturbances. The tuning of the controller parameters is no less important in the control process . Many methods of tuning the controller use the dynamic characteristics of the controlled process (dynamic model of the controlled object). Based on many studies it was found that the dynamics of many processes of coal enrichment can be represented by a dynamic model with properties of the inertial element with a time delay. The identification of object parameters (including the time constant) in industrial conditions is usually performed during normal operation (with the influence of disturbances) from this reason, determined parameters of the dynamic model may differ from the parameters of the actual process. The control system with controller parameters tuned on the basis of such a model may not satisfy the assumed control quality requirements. In the paper, the analysis of the influence of changes in object model parameters in the course of the controlled value has been carried out. Research on the controller settings calculated according to parameters T and τ were carried out on objects with other parameter values. In the studies, a sensitivity analysis method was used. The sensitivity analysis for the three methods of tuning the PI controller for the coal enrichment processes control systems characterized by dynamic properties of the inertial element with time delay has been presented. Considerations are performed at various parameters of the object on the basis of the response of the control system for a constant value of set point. The assessment of considered tuning methods based on selected indices of control quality have been implemented.
Go to article

Abstract

The study of the subdivision driving technology of a stepper motor and two types of typical acceleration and deceleration curves aims at optimizing the open-loop control performance of the stepper motor. The simulation model of a two-phase hybrid stepper motor open-loop control system is set up based on the mathematical model of the stepper motor, in order to let the stepper motor have the smaller stepper angle, two types of typical acceleration and a deceleration curve algorithm are designed for the real- time online calculation based on the subdivision driving technology. It respectively carries out the simulation analysis for their control effects. The simulation results show that the parabolic acceleration and deceleration curves have a larger maximum in-step rotation angle and the faster dynamic response ability in the same control period, and at the same time, the position tracking error of an intermediate process is smaller.
Go to article

Abstract

This paper presents a concept of humanoid robot motion generation using the dedicated simplified dynamic model of the robot (Extended Cart-Table model). Humanoid robot gait with equal steps length is considered. Motion pattern is obtained here with use of Preview Control method. Motion trajectories are first obtained in simulations (off-line) and then they are verified on a test-bed. Tests performed using the real robot confirmed the correctness of the method. Robot completed a set of steps without losing its balance.
Go to article

Abstract

The active noise-reducing casing developed and promoted by the authors in recent publications have multiple advantages over other active noise control methods. When compared to classical solutions, it allows for obtaining global reduction of noise generated by a device enclosed in the casing. Moreover, the system does not require loudspeakers, and much smaller actuators attached to the casing walls are used instead. In turn, when compared to passive casings, the walls can be made thinner, lighter and with much better thermal transfer than sound-absorbing materials. For active noise control a feedforward structure is usually used. However, it requires an in-advance reference signal, which can be difficult to be acquired for some applications. Fortunately, usually the dominant noise components are due to rotational operations of the enclosed device parts, and thus they are tonal and multitonal. Therefore, it can be adequately predicted and the Internal Model Control structure can be used to benefit from algorithms well developed for feedforward systems. The authors have already tested that approach for a rigid casing, where interaction of the walls was significantly reduced. In this paper the idea is further explored and applied for a light-weight casing, more frequently met in practice, where each vibrating wall of the casing influences all the other walls. The system is verified in laboratory experiments.
Go to article

Abstract

An original fuzzy team control model is presented in this article. The model is based on a non-traditional combination of classical and contemporary achievements of management and mathematical theories of fuzzy logic and fuzzy sets. In methodological terms, the article also offers a set of tools for measuring and evaluating both team performance and the effectiveness of the team control system in the organization. Fuzzy tools and techniques for decision-making, studying of hidden effects and joint influences, and quantification of evaluations are employed in this set of tools. The suggested fuzzy model contributes to overcoming theoretical deficits on the issues of team control, and the methodology of team control fills a gap in the toolkit of team management. The results from verification of the fuzzy team control model at a small-sized Bulgarian enterprise are also discussed in this article. They indicate that it is possible to develop a fuzzy model for team control, increasing the effectiveness of the team control system in the enterprise.
Go to article

Abstract

An on-line optimising control strategy involving a two level extended Kalman filter (EKF) for dynamic model identification and a functional conjugate gradient method for determining optimal operating condition is proposed and applied to a biochemical reactor. The optimiser incorporates the identified model and determines the optimal operating condition while maximising the process performance. This strategy is computationally advantageous as it involves separate estimation of states and process parameters in reduced dimensions. In addition to assisting on-line dynamic optimisation, the estimated time varying uncertain process parameter information can also be useful for continuous monitoring of the process. This strategy ensures that the biochemical reactor is operated at the optimal operation while taking care of the disturbances that are encountered during operation. The simulation results demonstrate the usefulness of the two level EKF assisted dynamic optimizer for on-line optimising control of uncertain nonlinear biochemical systems.
Go to article

Abstract

Optimization of encoding process in video compression is an important research problem, especially in the case of modern, sophisticated compression technologies. In this paper, we consider HEVC, for which a novel method for selection of the encoding modes is proposed. By the encoding modes we mean e.g. coding block structure, prediction types and motion vectors. The proposed selection is done basing on noise-reduced version of the input sequence, while the information about the video itself, e.g. transform coefficients, is coded basing on the unaltered input. The proposed method involves encoding of two versions of the input sequence. Further, we show realization proving that the complexity is only negligibly higher than complexity of a single encoding. The proposal has been implemented in HEVC reference software from MPEG and tested experimentally. The results show that the proposal provides up to 1.5% bitrate reduction while preserving the same quality of a decoded video.
Go to article

Abstract

Glottal waveform models have long been employed in improving the quality of speech synthesis. This paper presents a new approach for modeling the glottal flow. The model is based on three control volumes that strike a one-mass and two-springs system sequentially and generate a glottal pulse. The first, second and third control volumes represent the opening, closing and closed phases of the vocal folds, respectively. The masses of the three control volumes and the size of the first one are the four parameters that define the shape, pitch and amplitude of the glottal pulse. The model may be viewed as parametric approach governed by second order differential equations rather than analytical functions and is very flexible for designing a glottal pulse. The glottal pulse generated by the present model, when compared with those generated by Rosenberg, LF and mucosal wave propagation models demonstrates that it appropriately represents the opening, closing and closed phases of the vocal fold oscillation. This leads to the validity of our model. Numerical solution of the present model has been found to be very efficient as compared to its analytical solution and two other well-known parametric models Rosenberg++ and LF. The accuracy of the numerical solution has been illustrated with the help of analytical solution. It has been observed that the accuracy improves by increasing the size of the first control volume and may decrease insignificantly with increase in the mass of any of the control volumes. Two experiments with the present model support its successful implementation as a voice source in speech synthesis. Thus our model renders itself as an efficient, accurate and realistic choice as a voice source to be employed in real-time speech production.
Go to article

Abstract

The article is devoted to the development of technogenic risk management models and formalization of the process of support in making decision in the sphere of industrial safety. The structural, informative and mathematical models, used to process information in the technological risks management, as well as a formal model of the process of support of making decision in achieving an acceptable level of technical risk are presented and analyzed.
Go to article

Abstract

The paper presents a new elastic scheduling task model which has been used in the uniprocessor node of a control measuring system. This model allows the selection of a new set of periods for the occurrence of tasks executed in the node of a system in the case when it is necessary to perform additional aperiodic tasks or there is a need to change the time parameters of existing tasks. Selection of periods is performed by heuristic algorithms. This paper presents the results of the experimental use of an elastic scheduling model with a GRASP heuristic algorithm.
Go to article

Abstract

This paper presents novel bi-converter structure to supply the Doubly Fed Induction Machine (DFIM). Two Voltage Source Inverters (VSI) feed the stator and rotor windings. The outputs of two VSI are combined electro-mechanically in the machine and, as a result, novel features can be obtained. For example, for high power drive applications, this configuration use two inverters dimensioned for a half of the DFIM power. A new Dual-Direct Torque Control scheme is developed with flux model of DFIM. Two Switching Tables (ST) linked to VSI are defined for stator and rotor flux vector control. Experimental and simulation results confirm good dynamic behaviour in the four quadrants of the speed-torque plane. Moreover, experimental results show the correct flux vector control behaviour and speed tracking performances.
Go to article

This page uses 'cookies'. Learn more