Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

The aim of the article is a preliminary assessment of the possibility of using ATES (Aquifer Thermal Energy Storage) technology for the seasonal storage of heat and cold in shallow aquifers in Poland. The ATES technology is designed to provide low-temperature heat and cold to big-area consumers. A study by researchers from the Delft University of Technology in the Netherlands indicates very favorable hydrogeological and climate conditions in most of Poland for its successful development. To confirm this, the authors used public hydrogeological data, including information obtained from 1324 boreholes of the groundwater observation and research network and 172 information sheets of groundwater bodies (GWBs). Using requirements for ATES systems, well-described in the world literature, the selection of boreholes was carried out in the GIS environment, which allowed aquifers that meet the required criteria to be captured. The preliminary assessment indicates the possibility of the successful implementation of ATES technology in Poland, in particular in the northern and western parts of the country, including the cities of: Gdańsk, Warsaw, Wrocław, Bydgoszcz, Słupsk, and Stargard.
Go to article

Abstract

Shoot tips excised from shoot culture of Salvia officinalis were encapsulated in 2% or 3% (w/v) sodium alginate and exposed to 50 mM calcium chloride for complexation. Immediately or after 6, 12 or 24 weeks of storage at 4°C, the synthetic seeds were cultured for 6 weeks on half-strength MS medium supplemented with indole-3-acetic acid (IAA) (0.1 mg/l) and solidified with 0.7% agar. The frequency of shoot and root emergence from encapsulated shoot tips was affected by the concentrations of sodium alginate and additives in the gel matrix (sucrose, gibberellic acid, MS nutrient medium) as well as duration of storage. The frequency of shoot and root induction of non-stored synthetic seeds was highest with shoot tips encapsulated with 2% sodium alginate containing 1.5% sucrose and 0.5 mg/l gibberellic acid (GA3). Shoot tips maintained their viability and ability to develop shoots even after 24 weeks of storage when they were encapsulated in 3% alginate with 1/3 MS medium, sucrose (1.5%) and GA3 (0.25 mg/l). Root formation tended to decrease with storage time. Overall, 90% of the plantlets derived from stored and non-stored synthetic seeds survived in the greenhouse and grew to phenotypically normal plants. This procedure can enable the use of synthetic seed technology for germplasm conservation of S. officinalis, a plant species of high medical and commercial value.
Go to article

This page uses 'cookies'. Learn more