Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

This paper presents an analysis of use of ultrasonic standing wave in cell separation from bodily fluids based on the example of erythrocyte separation from plasma. It describes movement of red blood cells in plasma under the influence of the acoustic field (whose forces result from interaction of red blood cells with plasma as the vibrating medium) and under the influence of resistance forces in Stokes’ and Oseen’s approximation. The general properties of solutions of the motion equation are given. The solutions for the parameters of the ultrasonic wave and blood cells which are interesting in terms of practical applications in medical diagnostics are discussed. Time constants of the cell transportation to the regions of stable equilibrium in the field of ultrasonic standing wave are estimated. The formulas which determine the time needed to obtain the assumed concentration increase in plasma in nodes and/or anti-nodes of the standing wave are derived.
Go to article

Abstract

A microstructural model of Red Blood Cell (RBC) behaviour was proposed. The erythrocyte is treated as a viscoelastic object, which is denoted by a network of virtual particles connected by elastic springs and dampers (Kelvin-Voigt model). The RBC is submerged in plasma modelled by lattice Boltzmann fluid. Fluid – structure interactions are taken into account. The simulations of RBC behaviour during flow in a microchannel and wall impact were performed. The results of RBC deformation during the flow are in good agreement with experimental data. The calculations of erythrocyte disaggregation from the capillary surface show the impact of RBC structure stiffness on the process.
Go to article

Abstract

In this paper the authors propose a decision support system for automatic blood smear analysis based on microscopic images. The images are pre-processed in order to remove irrelevant elements and to enhance the most important ones – the healthy blood cells (erythrocytes) and the pathologic ones (echinocytes). The separated blood cells are analysed in terms of their most important features by the eigenfaces method. The features are the basis for designing the neural network classifier, learned to distinguish between erythrocytes and echinocytes. As the result, the proposed system is able to analyse the smear blood images in a fully automatic way and to deliver information on the number and statistics of the red blood cells, both healthy and pathologic. The system was examined in two case studies, involving the canine and human blood, and then consulted with the experienced medicine specialists. The accuracy of classification of red blood cells into erythrocytes and echinocytes reaches 96%.
Go to article

This page uses 'cookies'. Learn more