Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

Rockburst is a common engineering geological hazard. In order to evaluate rockburst liability in kimberlite at an underground diamond mine, a method combining generalized regression neural networks (GRNN) and fruit fly optimization algorithm (FOA) is employed. Based on two fundamental premises of rockburst occurrence, depth, σθ, σc, σt, B1, B2, SCF, Wet are determined as indicators of rockburst, which are also input vectors of GRNN model. 132 groups of data obtained from rockburst cases from all over the world are chosen as training samples to train the GRNN model; FOA is used to seek the optimal parameter σ that generates the most accurate GRNN model. The trained GRNN model is adopted to evaluate burst liability in kimberlite pipes. The same eight rockburst indicators are acquired from lab tests, mine site and FEM model as test sample features. Evaluation results made by GRNN can be confirmed by a rockburst case at this mine. GRNN do not require any prior knowledge about the nature of the relationship between the input and output variables and avoid analyzing the mechanism of rockburst, which has a bright prospect for engineering rockburst potential evaluation.
Go to article

Abstract

Land surveyors, photogrammetrists, remote sensing engineers and professionals in the Earth sciences are often faced with the task of transferring coordinates from one geodetic datum into another to serve their desired purpose. The essence is to create compatibility between data related to different geodetic reference frames for geospatial applications. Strictly speaking, conventional techniques of conformal, affine and projective transformation models are mostly used to accomplish such task. With developing countries like Ghana where there is no immediate plans to establish geocentric datum and still rely on the astro-geodetic datums as it national mapping reference surface, there is the urgent need to explore the suitability of other transformation methods. In this study, an effort has been made to explore the proficiency of the Extreme Learning Machine (ELM) as a novel alternative coordinate transformation method. The proposed ELM approach was applied to data found in the Ghana geodetic reference network. The ELM transformation result has been analysed and compared with benchmark methods of backpropagation neural network (BPNN), radial basis function neural network (RBFNN), two-dimensional (2D) affine and 2D conformal. The overall study results indicate that the ELM can produce comparable transformation results to the widely used BPNN and RBFNN, but better than the 2D affine and 2D conformal. The results produced by ELM has demonstrated it as a promising tool for coordinate transformation in Ghana.
Go to article

This page uses 'cookies'. Learn more