Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

In this paper, Lagrange’s equations along with the Ritz method are used to obtain the equation of motion for a flexible, slender cylinder subjected to axial flow. The cylinder is supported only by a translational and a rotational spring at the upstream end, and at the free end, it is terminated by a tapering end-piece. The equation of motion is solved numerically for a system in which the translational spring is infinitely stiff, thus acting as a pin, while the stiffness of the rotational spring is generally non-zero. The dynamics of such a system with the rotational spring of an average stiffness is described briefly. Moreover, the effects of the length of the cylinder and the shape of the end-piece on the critical flow velocities and the modal shapes of the unstable modes are investigated.
Go to article

Abstract

This paper presents an analysis of the blending characteristics of axial flow high-speed impellers under a turbulent regime of flow of an agitated low viscosity liquid. The conductivity method is used to determine the time course of blending (homogenisation) of miscible liquids in a pilot plant fully baffled mixing vessel, and a torquemeter is used for measuring the impeller power input in the same system. Four-blade and six-blade pitched blade impellers and three high efficiency axial flow impellers are tested for the given degree of homogeneity (98%). The experimental results and also the results of the authors' previous study, in accordance with the theoretical approach described in the literature, show that there is a universal relationship between the impeller power number and the dimensionless blending time, taking into consideration the impeller-to-vessel diameter ratio, independent of the geometry of the axial flow impeller but dependent on the degree of homogeneity. This relationship is found to be valid on a pilot plant scale under a turbulent flow regime of an agitated liquid.
Go to article

This page uses 'cookies'. Learn more