Search results

Filters

  • Journals
  • Date

Search results

Number of results: 4
items per page: 25 50 75
Sort by:

Abstract

In this study, solidification/stabilization (S/S) of electric arc furnace dust (EAFD) which is generated during the production of steel from scrap metals and classified as hazardous waste were investigated by using different ratios of cement and low grade MgO (LG MgO) as binding agents. Type I PC 42.5 R portland cement and LG MgO which contains 70–80% MgO were used. S/S blocks that contain different ratios of binding agents which have 1/0.5 – 1/1 – 1/2 – 1/3 – 1/4 – 1/5 cement/LG MgO ratio and S/S blocks which contain only cement and no LG MgO agents were prepared. These blocks, which contain 3 different waste ratios according to weight, 20%, 30% and 40% respectively, were produced and exposed to 28-day water purification. At the end of the purification process, S/S blocks were extracted using TCLP (Toxicity Characteristic Leaching Procedure) tests in order to determine the leaching behavior of Zn, Pb, and Cd in S/S blocks. By the end of this study, it was concluded that the recovery of EAFD is possible and applicable by immobilization. The findings of the study concluded that environmental performances or structural properties of blocks contain 30% waste by weight are suitable. This method is a proper one for recovering and treatment of EAFD with mixture of cement and LG MgO.
Go to article

Abstract

The post-processing slags containing about 0.8 wt.% of copper were subjected to the treatment of a complex reagent. The chemical composition of the complex reagent has been elaborated and patented in frame of the Grant No. PBS3/A5/45/2015. The slags had an industrial origin and were delivered by the Smelter and Refinery Plant, Głogów, as a product of the direct-to-blister technology performed in the flash furnace assisted by the arc furnace. An agglomeration of copper droplets suspended in the liquid slag, their coagulation, and deposition on the bottom of furnace were observed after the treatment this post-processing slag by the mentioned reagent. The treatment of the post-processing slags by the complex reagent was performed in the arc furnace equipped with some additional electrodes situated at the furnace bottom (additional, in comparison with the arc furnace usually applied in the Smelter and Refinery Plant, Głogów). The behaviour of the copper droplets in the liquid slag within the competition between buoyancy force and gravity was studied from the viewpoint of the required deposition of coagulated copper droplets. The applied complex reagent improves sufficiently the surface free energy of the copper droplets. In the result, the mechanical equilibrium between coagulated copper droplets and surrounding liquid slag is properly modified. Eventually, sufficiently large copper droplets are subjected to a settlement on the furnace bottom according to the requirements. The agglomeration and coagulation of the copper droplets were significantly improved by an optimized tilting of the upper electrodes and even by their rotation. Moreover, the settlement was substantially facilitated and improved by the employment of both upper and lower system of electrodes with the simultaneous substitution of the variable current by the direct current.
Go to article

Abstract

An economical alternative for the steel industry which uses a separate ferrosilicon and aluminum for the deoxidization of steel is a complex deoxidizer in the form of FeSiAl alloys. The effectiveness of complex deoxidizers is higher and they have a positive effect on quality improvement and also for mechanical properties of the finished steel. It is associated with a smaller number of non-metallic inclusions and a more favorable its distribution in the structure of steel. Noteworthy are the waste from the mining industry simultaneously contains SiO2 and Al2O3 oxides with a few of dopants in the form of CaO, MgO, FeO, TiO2 oxides. These wastes are present in large quantities and can be a cheap raw material for obtaining complex FeSiAl ferroalloys by an electrothermal method. “Poor” hard coal grades which so far did not apply as a reducing agent in the ferroalloy industry because of the high ash content can also be a raw material for the electrothermal FeSiAl process. The electrothermal FeSiAl melting process is similar to the ferrosilicon process in the submerged arc furnace. For this reason, a model based on Gibbs’ free enthalpy minimization algorithm was used to analyze the simultaneous reduction of SiO2 and Al2O3 oxides, which was originally elaborated for the ferrosilicon smelting process. This is a system of two closed reactors: the upper one with the lower temperature and the lower one with the higher temperature. Between the reaction system and the environment, and between the reactors inside the system, there is a cyclical mass transfer in moments when the state of equilibrium is reached in the reactors. Based on the model, the basic parameters of the electrothermal reduction process of SiO2 and Al2O3 oxides were determined and a comparative analysis was made towards the ferrosilicon process.
Go to article

Abstract

Zinc is present in electric arc furnace dust (EAFD) mainly in two basic minerals, namely as franklinite ZnFe2O4 and/or zincite ZnO. While zincite is relatively reactive and easily treatable, franklinite is considerably refractory, which causes problems during EAFD processing. In this work EAFD containing 18.53% Zn was leached in water solution of ammonium carbonate. This leaching solution selectively leaches zincite, while franklinite is refractory and stable against leaching in this case. The temperature dependence of zinc leaching from EAFD was studied and the activation energy EA was determined by two methods: 1.) classically based on zinc chemical analyses from the leaching solution and 2.) by using of X-Ray diffraction qualitative phase analyses of leaching residues. The determined values of activation energies 37.41 and 38.55 kJmol–1 match perfectly, which show the excellent possibility of using X-Ray diffraction toward the study of leaching kinetics at properly chosen experimental conditions. The important result is the determination of the amount zincite and franklinite in EAFD, which is not possible by using of classical chemical methods.
Go to article

This page uses 'cookies'. Learn more