Search results

Filters

  • Journals
  • Keywords
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

Fractal analysis is one of the rapidly evolving branches of mathematics and finds its application in different analyses such as pore space description. It constitutes a new approach to the issue of their natural irregularity and roughness. To be properly applied, it should be encompassed by an error estimation. The article presents and verifies uncertainties along with imperfections connected with image analysis and expands on the possible ways of their correction. One of key aspects of such research is finding both appropriate place and the number of photos to take. A coarse- grained sandstone thin section was photographed and then pictures were combined into one, bigger image. Fractal parameters distributions show their change and suggest that the accurately gathered group of photos include both highly and less porous regions. Their amount should be representative and adequate to the sample. The resolution influence on the fractal dimension and lacunarity values was examined. For SEM limestone images obtained using backscattered electrons, magnification in the range of 120x to 2000x was used. Additionally, a single pore was examined. The acquired results point to the fact that the values of fractal dimension are similar to a wide range of magnifications, while lacunarity changes each time. This is connected with changing homogeneity of the image. The article also undertakes a problem of determining fractal parameters spatial distribution based on binarization. The available methods assume that it is carried out after or before the image division into rectangles to create fractal dimension and lacunarity values for interpolation. An individual binarization, although time consuming, provides better results that resemble reality to a closer degree. It is not possible to define a single, correct methodology of error elimination. A set of hints has been presented that can improve results of further image analysis of pore space.
Go to article

Abstract

This paper presents application of optical microscope for evaluation of microtexture changes of coarse aggregate during simulated polishing in laboratory. Observations of the apparent changes on surfaces of seven different aggregates are presented. Simulation polishing of aggregate was performed in accordance with PN-EN 1097-8:2009. lmages of the aggregate surface were taken with the optical microscope in the reflection mode in particular stages of polishing. Digital images were analyzed. Standard deviation was determined on the basis of the histogram of intensities from digital images of the surfaces of aggregate grains which was assurned as the measure of changes in microtexture during simulated polishing (namely the σh parameter). Statistical analysis has shown that the changes of the σh parameter between the particular stages of polishing confirm certain trends related to the petrographic characteristic of the rocks. Aggregates which included minerals of similar hardness (granodiorite, dolomile, basalt) were more prone to polishing than gabbro and postglacial. Regeneration of the microtexture, the recovery to its original asperity, occurred in the case of quartz sandstone and steelmaking slag.
Go to article

This page uses 'cookies'. Learn more