Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:

Abstract

Mining ventilation should ensure in the excavations required amount of air on the basis of determined regulations and to mitigate various hazards. These excavations are mainly: longwalls, function chambers and headings. Considering the financial aspect, the costs of air distribution should be as low as possible and due to mentioned above issues the optimal air distribution should be taken into account including the workers safety and minimization of the total output power of main ventilation fans. The optimal air distribution is when the airflow rate in the mining areas and functional chambers are suitable to the existing hazards, and the total output power of the main fans is at a minimal but sufficient rate. Restructuring of mining sector in Poland is usually connected with the connection of different mines. Hence, dependent air streams (dependent air stream flows through a branch which links two intake air streams or two return air streams) exist in ventilation networks of connected mines. The zones of intake air and return air include these air streams. There are also particular air streams in the networks which connect subnetworks of main ventilation fans. They enable to direct return air to specified fans and to obtain different airflows in return zone. The new method of decreasing the costs of ventilation is presented in the article. The method allows to determine the optimal parameters of main ventilation fans (fan pressure and air quantity) and optimal air distribution can be achieved as a result. Then the total output power of the fans is the lowest which makes the reduction of costs of mine ventilation. The new method was applied for selected ventilation network. For positive regulation (by means of the stoppings) the optimal air distribution was achieved when the total output power of the fans was 253.311 kW and for most energy-intensive air distribution it was 409.893 kW. The difference between these cases showed the difference in annual energy consumption which was 1 714 MWh what was related to annual costs of fan work equaled 245 102 Euro. Similar values for negative regulation (by means of auxiliary fans) were: the total output power of the fans 203.359 kW (optimal condition) and 362.405 kW (most energy-intensive condition). The difference of annual energy consumption was 1 742 MWh and annual difference of costs was 249 106 Euro. The differences between optimal airflows considering positive and negative regulations were: the total output power of fans 49.952 kW, annual energy consumption 547 MWh, annual costs 78 217 Euro.
Go to article

Abstract

It is well known that sound absorption and sound transmission properties of open porous materials are highly dependent on their airflow resistance values. Low values of airflow resistance indicate little resistance for air streaming through the porous material and high values are a sign that most of the pores inside the material are closed. The laboratory procedures for measuring airflow resistance have been stan- dardized by several organizations, including ISO and ASTM for both alternate flow and continuous flow. However, practical implementation of these standardized methods could be both complex and expensive. In this work, two indirect alternative measurement procedures were compared against the alternate flow standardized technique. The techniques were tested using three families of eco-friendly sound absorbent materials: recycled polyurethane foams, coconut natural fibres, and recycled polyester fibres. It is found that the values of airflow resistance measured using both alternative methods are very similar. There is also a good correlation between the values obtained through alternative and standardized methods.
Go to article

Abstract

In the acoustic fatigue experiment for hypersonic vehicle in simulated harsh service environment on ground, acoustic loads on the surface of test pieces of the vehicle need to be measured. However, for the normal microphones without high temperature resistance ability, the near field sound measurement cannot be achieved. In this work, on the basis of previous researches, an acoustic tubes array is designed to achieve the near field measurement of acoustic loads on the surface of the test piece in the supersonic airflow with high temperature achieved by coherent jet oxygen lance. Firstly, the process of designing this acoustic tubes array is introduced. Secondly, the equality of phase differences at the front and at the end of the tubes is stated and proved using a phase differences test with an acoustic tubes array whose design is presented in this text; therefore, the phase differences of signals acquired by microphones can be directly applied to beamforming algorithm to determine the acoustic load source. Finally, using above mentioned acoustic tubes array, measurement of acoustic load, with and without a test piece in the supersonic airflow made by the coherent jet oxygen lance, is conducted respectively, and the measurements results are analyzed.
Go to article

Abstract

Balanced distribution of air in coal-fired boiler is one of the most important factors in the combustion process and is strongly connected to the overall system efficiency. Reliable and continuous information about combustion airflow and fuel rate is essential for achieving optimal stoichiometric ratio as well as efficient and safe operation of a boiler. Imbalances in air distribution result in reduced boiler efficiency, increased gas pollutant emission and operating problems, such as corrosion, slagging or fouling. Monitoring of air flow trends in boiler is an effective method for further analysis and can help to appoint important dependences and start optimization actions. Accurate real-time monitoring of the air distribution in boiler can bring economical, environmental and operational benefits. The paper presents a novel concept for online monitoring system of air distribution in coal-fired boiler based on real-time numerical calculations. The proposed mathematical model allows for identification of mass flow rates of secondary air to individual burners and to overfire air (OFA) nozzles. Numerical models of air and flue gas system were developed using software for power plant simulation. The correctness of the developed model was verified and validated with the reference measurement values. The presented numerical model for real-time monitoring of air distribution is capable of giving continuous determination of the complete air flows based on available digital communication system (DCS) data.
Go to article

Abstract

In the paper, the authors discuss the construction of a model of an exemplary urban layout. Numerical simulation has been performed by means of a commercial software Fluent using two different turbulence models: the popular k-ε realizable one, and the Reynolds Stress Model (RSM), which is still being developed. The former is a 2-equations model, while the latter – is a RSM model – that consists of 7 equations. The studies have shown that, in this specific case, a more complex model of turbulence is not necessary. The results obtained with this model are not more accurate than the ones obtained using the RKE model. The model, scale 1:400, was tested in a wind tunnel. The pressure measurement near buildings, oil visualization and scour technique were undertaken and described accordingly. Measurements gave the quantitative and qualitative information describing the nature of the flow. Finally, the data were compared with the results of the experiments performed. The pressure coefficients resulting from the experiment were compared with the coefficients obtained from the numerical simulation. At the same time velocity maps and streamlines obtained from the calculations were combined with the results of the oil visualisation and scour technique.
Go to article

This page uses 'cookies'. Learn more