Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

The aim of this publication is to design a procedure for the synthesis of an IDT (interdigital transducer) with diluted electrodes. The paper deals with the surface acoustic waves (SAW) and the theory of synthesis of the asymmetrical delay line with the interdigital transducer with diluted electrodes. The authors developed a theory, design, and implementation of the proposed design. They also measured signals. The authors analysed acoustoelectronic components with SAW: PLF 13, PLR 40, delay line with PAV 44 PLO. The presented applications have a potential practical use.
Go to article

Abstract

Modern gas turbine systems operate in temperatures ranging from 1200°C to even 1500°C, which creates bigger problems related to the blade material thermal strength. In order to ensure appropriate protection of the turbine blades, a sophisticated cooling system is used. Current emphasis is placed on the application of non-stationary flow effects to improve cooling conditions, e.g., the unsteady-jet heat transfer or the heat transfer enhancement using high-amplitude oscillatory motion. The presented research follows a similar direction. A new concept is proposed of intensification of the heat transfer in the cooling channels with the use of an acoustic wave generator. The acoustic wave is generated by an appropriately shaped fixed cavity or group of cavities. The phenomenon is related to the coupling mechanism between the vortex shedding generated at the leading edge and the acoustic waves generated within the cavity area. Strong instabilities can be observed within a certain range of the free flow velocities. The presented study includes determination of the relationship between the amplitude of acoustic oscillations and the cooling conditions within the cavity. Different geometries of the acoustic generator are investigated. Calculations are also performed for variable flow conditions. The research presented in this paper is based on a numerical model prepared using the Ansys CFX-17.0 commercial CFD code.
Go to article

This page uses 'cookies'. Learn more