Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

Casting porosity is the main factor influencing the fatigue properties of Al-Si alloys. Due to the increasing use of aluminum castings, porosity characterization is useful for estimating their fatigue strength. In principle, a combination of metallographic techniques and statistical pore analysis is a suitable approach for predicting the largest defect size that is critical for the casting. Here, the influence of modifiers and casting technology on the largest pore size population in AlSi7Mg alloy specimens is obtained and discussed adopting the Murakami's approach. However, porosity evaluation is a challenge in the case of microshrinkage pores, which are frequently found in industrial castings. Their complicated morphology prevents a reliable definition of an equivalent defect size based on metallographic techniques. This contribution reports the application of X-ray tomography to the 3D reconstruction of real pores in cast Al-Si alloys and provides insight into the complication of microshrinkage pore sizing by metallography.
Go to article

Abstract

Iron is the most common and detrimental impurity in casting alloys and has been associated with many defects. The main consequence of the presence or adding of iron to AlSi alloys is the formation Fe-rich intermetallics with especially deleterious β-Al5FeSi. β-Al5FeSi phases are most often called needles on 2D micro sections, whilst platelets in 3D geometry. The x-ray tomography results have demonstrated Ferich phases with shapes different from simple forms such as needles or platelets and presented bent and branched phases. β grown as complicated structure of bent and branched intermetallics can decrease feeding ability, strengthen pores nucleation and eutectic colonies nucleation leading to lower permeability of mushy zone and porosity in the castings.
Go to article

This page uses 'cookies'. Learn more