Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

Development of new or upgrading of existing airplanes requires many different analyses, e.g., thermal, aerodynamical, structural, and safety. Similar studies were performed during re-design of two small aircrafts, which were equipped with new turboprop engines. In this paper thermo-fluid analyses of interactions of new propulsion systems with selected elements of airplane skin were carried out. Commercial software based numerical models were developed. Analyses of heat and fluid flow in the engine bay and nacelle of a single-engine airplane with a power unit in the front part of the fuselage were performed in the first stage. Subsequently, numerical simulations of thermal interactions between the hot exhaust gases, which leave the exhaust system close to the front landing gear, and the bottom part of the fuselage were investigated. Similar studies were carried out for the twin-engine airplane with power units mounted on the wings. In this case thermal interactions between the hot exhaust gases, which were flowing out below the wings, and the wing covers and flaps were studied. Simulations were carried out for different airplane configurations and operating conditions. The aim of these studies was to check if for the assumed airplane skin materials and the initially proposed airplane geometries, the cover destruction due to high temperature is likely. The results of the simulations were used to recommend some modifications of constructions of the considered airplanes.
Go to article

Abstract

This paper presents the origins of marine steam turbine application on liquefied natural gas carriers. An analysis of alternative propulsion plant trends has been made. The more efficient ones with marine diesel engines gradually began to replace the less efficient plants. However, because of many advantages of the steam turbine, further development research is in progress in order to achieve comparable thermal efficiency. Research has been carried out in order to achieve higher thermal efficiency throughout increasing operational parameters of superheated steam before the turbine unit; improving its efficiency to bring it nearer to the ideal Carnot cycle by applying a reheating system of steam and multi stage regenerative boiler feed water heating. Furthermore, heat losses of the system are reduced by: improving the design of turbine blades, application of turbine casing and bearing cooling, as well as reduction in steam flow resistance in pipe work and maneuvering valves. The article identifies waste energy sources using the energy balance of a steam turbine propulsion plant applied on the liquefied natural gas carrier which was made out basing on results of a passive operation experiment, using the measured and calculated values from behavioral equations for the zero-dimensional model. Thermodynamic functions of state of waste heat fluxes have been identified in terms of their capability to be converted into usable energy fluxes. Thus, new ways of increasing the efficiency of energy conversion of a steam turbine propulsion plant have been addressed.
Go to article

This page uses 'cookies'. Learn more