Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

Sedimentological study of the three geographically separated outcrops of bottom− sets of a single lava−fed delta (Pliocene) in the James Ross Island (Antarctica) allows recognition of six lithofacies. Deposits of traction currents, deposits of volcaniclastic debris flows and products of such flows transformations (both l ow− and high−density turbidity currents) and glacigenic deposits (subaqueous de bris flows and traction/turbidity currents) were all recognised. Existence of submarine proglacial environment formed prior to formation of volcaniclastic deposits partly covering the subaqueous slopes of volcano is supposed. The principal role of mass flow processes was recognised and explained by relative steep slopes of the lava−fed delta. The distribution of lithofacies significantly differs in the individual outcrops. These variations in sedimentary succession an d also in thickness of volcaniclastic deposits of “bottomsets” of the single lava fed delta suggest principal role of local conditions and paleogeography for development and preservation of this part of delta depositional system. Moreover proximal and distal setting can be followed and direct vs . more distant relation to over−riding lava−fed delta supposed. The sedimentary succession terminated by foresets of hyaloclastite breccia.
Go to article

Abstract

A sequence of glacial deposits up to 4 m thick unconformably overlies the Eocene La Meseta Formation on the Seymour Island plateau (meseta) and forms a lithostratigraphically distinct unit in the succession of the James Ross Basin, which is formally named here as the Weddell Sea Formation. The formation is thus far known only from Seymour Island. This is a terrestrial melt-out till which contains abundant erratics and also reworked Cretaceous–Tertiary micro- and macrofossils within a silty clay matrix. The terrestrial origin of this till is shown by glacial striations at the base of the unit. The largest erratics (up to 3 m in diameter) are composed of plutonic (granitoids) and metamorphic (gneiss and crystalline schist) rocks of the Antarctic Peninsula provenance. Smaller in size and much more numerous are erratics of volcanic rocks, represented by andesite, basalt and corresponding pyroclastics of the James Ross Island Volcanic Group. Less common are erratics of sedimentary rocks, sometimes bearing fossils derived from the underlying Tertiary and Cretaceous strata. A few erratics from the top of the studied sequence are conglomerates of the Cockburn Island Formation with a foraminifer fauna. These are the youngest clasts within the Weddell Sea Formation. The presence of the Pliocene index fossil Ammoelphidiella antarctica Conato et Segre, 1974 indicates a lower age limit of latest Pliocene or earliest Pleistocene age. The upper age limit of the formation has not been established. An encrusting, unilamellar, colony of the bryozoan Escharella Gray, 1848 has been found on the one of erratics from the Weddell Sea Formation. This is the first fossil record of this genus in Antarctica.
Go to article

This page uses 'cookies'. Learn more