Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

The permanent magnet synchronous motor (PMSM) driven by an inverter is widely used in the industrial field, but the inverter has a significant impact on the operational stability of the PMSM. The torque ripple of the PMSM is directly affected by the coupling of multiple harmonic voltages in the motor windings. In order to analyze its influence, a water-cooled PMSM with 20 kW 2000 r/min is taken as an example to establish the finite element model of the prototype, and the correctness of the model is verified by experiments. Firstly, based on the finite element method, the electromagnetic field of the PMSM is numerically solved in different operating states, and the performance parameters of the PMSM are obtained. Based on these parameters, the influence of the harmonic voltage amplitude on the torque ripple is studied, and the influence law is obtained. Secondly, combined with the decoupling analysis method, the influence of harmonic voltage coupling on the torque ripple is compared and analyzed, and the variation law of harmonic voltage coupling on the torque ripple is obtained. In addition, the influence of different harmonic voltage coupling on the average torque of the PMSM is studied, and the influence degree of different harmonic voltage amplitude on the torque fluctuation is determined. The conclusion of this paper provides reliable theoretical guidance for improving motor performance.
Go to article

Abstract

A brushless direct-current (BLDC) and permanent-magnet synchronous motors (PMSMs) with permanent magnets are characterised by the highest operating parameters among all electric motors. High dynamics and the possibility of controlling their work improves the operating parameters of the drive system and reduces the operating costs of such a device. The high cost of these machines associated with the complexity of their construction is a serious barrier to increasing their range in small propulsion systems, where lower energy consumption does not give such spectacular financial profits. To reduce costs, manufacturers often limit the variety of manufactured engines so that by increasing the volume, the unit cost of the device can be minimised. This is often hindered by the implementation of projects deviating from standards where it is necessary to use drive systems of different power. The solution to this problem could be the use of two independent drive systems working in strict correlation to ensure sufficient operating parameters of the device. The article presents a method of controlling a drive system in which two propulsion systems with PMSM engines were used. These devices are communicated with each other by a serial bus, by means of which data necessary for the correct operation of motors connected by a drive belt are transmitted. Since these machines affect both the working machine and each other, it is necessary to optimise such a system so as to avoid excessive oscillation of the drive torque in the system.
Go to article

Abstract

A lot of methods for sensorless drive control have been published last years for synchronous and asynchronous machines. One of the approaches uses high frequency carrier injection for position control. The injected high frequency signal is controlled to remain in alignment with the saliency produced by the saturation of the main flux. Due to the fact that it does not use the fundamental machine model which fails at standstill of the magnetic field it is possible to control the drive even at zero speed. In spite of this obvious advantage industry does not apply sensorless control in their products. This is due to the dependency of many published methods on physical parameters of the machine. The high frequency carrier injection method, presented in this paper, does not need to have exact machine parameters and it can be used for machines where there is only a very small rotor anisotropy like in Surface Mounted Permanent Magnet Synchronous Machines (SMPMSM) [1]. Standard drives usually are supplied by a 6-pulse diode rectifier. Due to new European directives concerning the harmonic content in the mains it is expected that the use of controlled pulse-width modulated PWM rectifiers will be enforced in the future [2]. An important advantage of this type of rectifiers is the regeneration of the energy back to the grid. Another benefit are low harmonics in comparison to diode rectifiers. Using one of many control methods published so far it is also possible to achieve almost unity power factor. However, in these methods voltage sensors are necessary to synchronize PWM rectifiers with the mains. Therefore they are not very popular in the industry with respect to the cost and the lack of reliability. Recently a control method was proposed which is based on a tracking scheme. It does not need any voltage sensor on the ac-side of the rectifier and it does not need to know accurate parameters of the system. This paper presents the control solution for a cheap, industry friendly (no additional hardware and installation effort) drive system. The phase tracking method for control of electrical drive and PWM rectifier is described. Encouraging experimental results are shown.
Go to article

This page uses 'cookies'. Learn more