Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 10
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

An initial assessment of the effectiveness of cast iron inoculation, performed by the method of impulse introducing the master alloy into cast iron, is presented. The experiment was concerned with the hypoeutectic gray cast iron inoculated with either the Alinoc or the Barinoc master alloy by means of an experimental device for pneumatic transportation. Examinations involved pneumatic injection of the powdered inoculant carried in a stream of gaseous medium (argon) into the metal bath held in the crucible of an induction furnace. It was found that the examined process is characterised by both high effectiveness and stability.
Przejdź do artykułu

Abstrakt

The computational intelligence tool has major contribution to analyse the properties of materials without much experimentation. The B4C particles are used to improve the quality of the strength of materials. With respect to the percentage of these particles used in the micro and nano, composites may fix the mechanical properties. The different combinations of input parameters determine the characteristics of raw materials. The load, content of B4C particles with 0%, 2%, 4%, 6%, 8% and 10% will determine the wear behaviour like CoF, wear rate etc. The properties of materials like stress, strain, % of elongation and impact energy are studied. The temperature based CoF and wear rate is analysed. The temperature may vary between 30°C, 100°C and 200°C. In addition, the CoF and wear rate of materials are predicted with respect to load, weight % of B4C and nano hexagonal boron nitride %. The intelligent tools like Neural Networks (BPNN, RBNN, FL and Decision tree) are applied to analyse these characteristics of micro / nano composites with the inclusion of B4C particles and nano hBN % without physically conducting the experiments in the Lab. The material properties will be classified with respect to the range of input parameters using the computational model.
Przejdź do artykułu

Abstrakt

The present investigation has been made to assess the influence of B4C reinforced with Ti-6Al-4V matrix prepared by powder metallurgy route. High energy ball milling was used to prepare the composites. Cylindrical preforms were prepared using suitable die set assembly. The green preforms were sintered in the muffle furnace at 900°C for 1 h. Further the preforms were cooled inside the furnace till the room temperature has attained. SEM with EDS mapping analysis was used to evaluate the morphology and elemental confirmation of the prepared composite. The density and hardness of the samples are determined using Archimedes principle and Rockwell hardness testing machine. The wear resistance of the samples was determined by employing a pin on disc apparatus. The hardness of the composites (Ti-6Al-4V /10B4C) was increased while comparing to the base material (Ti-6Al-4V) which is attributed to the presence of hard ceramic phase. Response Surface Methodology (RSM) five level central composite design approach was accustomed and it minimised the amount of experimental conditions and developed mathematical models among the key process parameters namely wt. % of B4C, applied load and sliding distances to forecast the abrasive response of Specific Wear Rate (SWR) and Coefficient of Friction (CoF). Analysis of variance was used to check the validity of the developed model. The optimum parameters of specific wear rate and coefficient of friction were identified.
Przejdź do artykułu

Abstrakt

Hot Isostatic Pressing elaboration of Norem02, an austenitic-ferritic hypereutectoid stainless steel, leads to the formation of an austenitic matrix with a mixture of acicular M7C3 and globular M23C6 carbides. The sintering tests, carried out by using an AISI 304L container, showed that the final microstructure and the carbides’ distribution of the HIPed Norem02 are strongly influenced by the process parameters (heating and cooling rate, sintering time, holding temperature and pressure) and by the particles’ size, microstructure and phase distribution of the initial powder. The morphological, crystallographic and chemical analysis of the sintered samples were completed by comprehension of the diffusion phenomena at the Norem02/304L interface, enabling the establishment of a correlation between elaboration process and final microstructure.
Przejdź do artykułu

Abstrakt

The preliminary results of the application of open-celled glassy-carbon foam (Cof) in magnesium matrix composites processed by the powder metallurgy method were presented. For the component consolidation, compaction with vertically-torsional vibration and hot-pressing were applied. For the material characterization, the microstructure examination LM and SEM with EDS was employed and also, the porosity and microhardness were measured. An influence of the carbon foam cells’ size on the composite porosity and microhardness was revealed. Additionally, a generation of a few micrometer thin and differently shaped MgO inclusions was observed. Differences in the oxide phase amount, size and shape in the magnesium matrix measured by the quantitative metallography method in the cross-sectioned composite elements were stated. With an increase of the distance from the composite roller top, an increase of the MgO content and microhardness was noticed.
Przejdź do artykułu

Abstrakt

The present investigation aims at fabricating a functionally graded Al-6Cr-Y2O3 composite and its microstructural and property characterization. Al-6Cr-alloys with varying percentage of Y2O3 (5-10 vol. %) have been used to fabricate FGM by powder metallurgy route. The samples were subsequently subjected to solution treatment at 610°C for 4 h followed by artificially aged at 310°C for 4 h. The microstructure, hardness and wear behavior of these FGM have been evaluated. FGM exhibited superior hardness (360 ± 5 VHN) as compared to the unprocessed composites (220 ± 5 VHN) due to the uniform dispersion of Y2O3 particles. Wear resistance of Al-6Cr-10 Y2O3 FGM were compared that of with pure Al-6Cr alloy by dry abrasive wear test. Al-6Cr-10 Y2O3 FGM composites were found to exhibit higher wear resistance with the minimum wear rate of 0.009 mm3/m compared to the Al- 6Cr alloy wear rate 0.02 mm3/m.
Przejdź do artykułu

Abstrakt

The research focuses on assessing the metal content, mainly copper, lead, iron and also silver in metallurgical slag samples from the area where historical metallurgical industry functioned. In the smelter located in Mogiła, near Krakow (southern Poland), whose operation is confirmed in sources from 1469, copper was probably refined as well as silver was separated from copper. Based on the change of chemical and soil phase content and also taking cartographic and historical data into account, considering the restrictions resulting from the modern land use the area was determined whose geochemical mapping can point to the location of the 15th century Jan Thurzo’s smelter in Mogiła near Krakow. Moreover, using the same approach with the samples of this kind here as with hazardous waste, an attempt has been made to assess their impact on the environment. Thereby, taking the geoenvironmental conditions into account, potential impact of the industrial activity has been assessed, which probably left large scale changes in the substratum, manifested in the structure, chemical content and soil phase changes. Discovering areas which are contaminated above the standard value can help to identify historical human activities, and finding the context in artefacts allows to treat geochemical anomalies as a geochronological marker. For this purpose the best are bed sediments, at present buried in the ground, of historical ditches draining the area of the supposed smelter. Correlating their qualities with analogical research of archeologically identified slags and other waste material allows for reconstructing the anthropopressure stages and the evaluation of their effects. The operation of Jan Thurzo’s smelter is significant for the history of mining and metallurgy of Poland and Central and Eastern Europe.
Przejdź do artykułu

Abstrakt

Article present various forms of transfer of information available on the Internet. An attempt was made to show the possibility of such a selection of the knowledge sources that, taking into account user preferences, would arouse his interest, showing in parallel the intended substantive content. This commitment is shown in the context of the current assumptions of building a platform dedicated to support the needs of production processes in foundry and metallurgy.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji