Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 9
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

Final quality of casts produced in a die casting process represents a correlation of setting of technological parameters of die casting cycle, properties of alloy, construction of a die and structure of gating and of bleeding systems. Suitable structure of a gating system with an appertaining bleeding system of the die can significantly influence mechanical and structural properties of a cast. The submitted paper focuses on influence of position of outfall of an gate into the cast on its selected quality properties. Layout of the test casts in the die was designed to provide filling of a shaping cavity by the melt with diverse character of flowing. Setting of input technological parameters during experiment remained on a constant level. The only variable was the position of the gate. Homogeneity represented by porosity f and ultimate strength Rm were selected to be the assessed representative quality properties of the cast. The tests of the influence upon monitored parameters were realized in two stages. The test gating system was primarily subjected to numerical tests with the utilization of a simulation program NovaFlow&Solid. Consequently, the results were verified by the experimental tests carried out with the physical casts produced during operation. It was proved that diverse placement of the gate in relation to the cast influences the mode of the melt flowing through the shaping cavity which is reflected in the porosity of the casts. The experimental test proved correlation of porosity f of the cast with its ultimate strength Rm. At the end of the paper, the interaction dependencies between the gate position, the mode of filling the die cavity, porosity f and ultimate strength Rm.
Przejdź do artykułu

Abstrakt

Experimental Mg-Al-RE type magnesium alloys for high-pressure die-casting are presented. Alloys based on the commercial AM50 magnesium alloy with 1, 3 and 5 mass % of rare earth elements were fabricated in a foundry and cast in cold chamber die-casting machines. The obtained experimental casts have good quality surfaces and microstructure consisting of an α(Mg)-phase, Al11RE3, Al10RE2Mn7 intermetallic compound and small amount of α+γ eutectic and Al2RE phases.
Przejdź do artykułu

Abstrakt

Magnesium alloys are one of the lightest of all the structural materials. Because of their excellent physical and mechanical properties the alloys have been used more and more often in various branches of industry. They are cast mainly (over 90%) on cold and hot chamber die casting machines. One of the byproducts of casting processes is process scrap which amounts to about 40 to 60% of the total weight of a casting. The process scrap incorporates all the elements of gating systems and fault castings. Proper management of the process scrap is one of the necessities in term of economic and environmental aspects. Most foundries use the process scrap, which involves adding it to a melting furnace, in a haphazard way, without any control of its content in the melt. It can lead to many disadvantageous effects, e.g. the formation of a hard buildup at the bottom of the crucible, which in time makes casting impossible due to the loss of the alloy rheological properties. The research was undertaken to determine the effect of an addition of the process scrap on the mechanical properties of AZ91 and AM50 alloys. It has been ascertained that the addition of a specific amount of process scrap to the melt increases the mechanical properties of the elements cast from AZ91 and AM50 alloys. The increase in the mechanical properties is caused mainly by compounds which can work as nuclei of crystallization and are introduced into the scrap from lubricants and anti-adhesive agents. Furthermore carbon, which was detected in the process scrap by means of SEM examination, is a potent grain modifier in Mg alloys [1-3]. The optimal addition of the process scrap to the melt was determined based on the statistical analysis of the results of studies of the effect of different process scrap additions on the mean grain size and mechanical properties of the cast parts.
Przejdź do artykułu

Abstrakt

The paper presents the results of investigations concerning the influence of negative (relative) pressure in the die cavity of high pressure die casting machine on the porosity of castings made of AlSi9Cu3 alloy. Examinations were carried out for the VertaCast cold chamber vertical pressure die casting machine equipped with a vacuum system. Experiments were performed for three values of the applied gauge pressure: -0.3 bar, -0.5 bar, and -0.7 bar, at constant values of other technological parameters, selected during the formerly carried initial experiments. Porosity of castings was assessed on the basis of microstructure observation and the density measurements performed by the method of hydrostatic weighing. The performed investigation allowed to find out that – for the examined pressure range – the porosity of castings decreases linearly with an increase in the absolute value of negative pressure applied to the die cavity. The negative pressure value of -0.7 bar allows to produce castings exhibiting porosity value less than 1%. Large blowholes arisen probably by occlusion of gaseous phase during the injection of metal into the die cavity, were found in castings produced at the negative pressure value of -0.3 bar. These blowholes are placed mostly in regions of local thermal centres and often accompanied by the discontinuities in the form of interdendritic shrinkage micro-porosity. It was concluded that the high quality AlSi9Cu3 alloy castings able to work in elevated temperatures can be achieved for the absolute value of the negative pressure applied to the die cavity greater than 0.5 bar at the applied set of other parameters of pressure die casting machine work.
Przejdź do artykułu

Abstrakt

The presented work is aimed to deal with the influence of changes in the value of negative (relative) pressure maintained in the die cavity of pressure die casting machine on the surface quality of pressure castings. The examinations were held by means of the modified Vertacast pressure die casting machine equipped with a vacuum system. Castings were produced for the parameters selected on the basis of previous experiments, i.e. for the plunger velocity in the second stage of injection at the level of 4 m/s, the pouring temperature of the alloy equal to 640°C, and the die temperature of 150°C. The examinations were carried on for three selected values of negative gauge pressure: - 0.03, - 0.05, and - 0.07 MPa. The quality of casting was evaluated by comparing the results of the surface roughness measurements performed for randomly selected castings. The surface roughness was measured by means of Hommel Tester T1000. After a series of measurements it was found that the smoothest surface is exhibited by castings produced at negative gauge pressure value of - 0.07 MPa.
Przejdź do artykułu

Abstrakt

The present work discusses results of increased temperature on shape-dimensional changes of a 110 type hose coupling, produced from EN AC-AlSi11 alloy with the use of pressure die casting technology. The castings were soaked for 3.5 h at temperatures 460°C, 475°C and 490°C. The verification of shape-dimensional accuracy of the elements after soaking treatment, in relation to raw casting, was carried out by comparing the 3D models received from 3D scanning. Soaking temperature of about 460°C-475°C results in no significant changes in the shapes and dimensions of the castings, or surface defects in the form of blisters, which can be seen at a temperature of 490°C.
Przejdź do artykułu

Abstrakt

Development of salt cores prepared by high-pressure squeezing and shooting with inorganic binders has shown a high potential of the given technology even for high-pressure casting of castings. Strength, surface quality of achieved castings, and solubility in water become a decisive criterion. The shape and quality of grain surface particularly of NaCl – cooking salts that can be well applied without anticaking additives has shown to be an important criterion. Thus the salt cores technology can cover increasingly growing demands for casting complexity especially for the automobile industry.
Przejdź do artykułu

Abstrakt

The paper deals with problem of optimal used automatic workplace for HPDC technology - mainly from aspects of operations sequence, efficiency of work cycle and planning of using and servicing of HPDC casting machine. Presented are possible ways to analyse automatic units for HPDC. The experimental part was focused on the rationalization of the current work cycle time for die casting of aluminium alloy. The working place was described in detail in the project. The measurements were carried out in detail with the help of charts and graphs mapped cycle of casting workplace. Other parameters and settings have been identified. The proposals for improvements were made after the first measurements and these improvements were subsequently verified. The main actions were mainly software modifications of casting center. It is for the reason that today's sophisticated workplaces have the option of a relatively wide range of modifications without any physical harm to machines themselves. It is possible to change settings or unlock some unsatisfactory parameters.
Przejdź do artykułu

Abstrakt

A measuring system was developed for the measurement of ejector forces in the die casting process. When selecting the sensor technology, particular care was taken to ensure that measurements can be taken with a high sampling rate so that the fast-running ejection process can be recorded. For this reason, the system uses piezoelectric force sensors which measure the forces directly at the individual ejector pins. In this way, depending on the number of sensors, it is possible to determine both the individual ejector forces and the total ejector force. The system is expandable and adaptable with regard to the number and position of the sensors and can also be applied to real HPDC components. Automatic triggering of the measurements is also possible. In addition to the measuring system, a device and a method for in-situ calibration of the sensors have also been developed. To test the measuring system, casting experiments were carried out with a real aluminium HPDC aluminium component. The experiments showed that it is possible to measure the ejector forces with sufficient sampling rate and also to observe the process steps of filling, intensification and die opening by means of ejector forces. Experimental setup serves as a basis for future investigations regarding the influencing parameters on the ejection process.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji