Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 6
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

Work on increasing the efficiency of heat exchangers used in car air conditioning systems may lead to a partial change in the construction of refrigeration systems. One of such changes is the use of smaller gas coolers, which directly translates into a reduction in the production costs of the entire system. The article presents the use of computational fluid dynamics methods to simulate the impact of changing the shape of an internal heat exchanger on the cooling efficiency with R744 as the refrigerant. Internal heat exchangers with different geometry of the outer channels were subjected to numerical analysis. The obtained results of calculations show temperature changes in inner and outer channels on the length of the heat exchanger.
Przejdź do artykułu

Abstrakt

An attempt was made to determine the vertical momentum and heat exchange in the near-ground atmosphere layer in the specific conditions of a sub-Antarctic island. For this purpose, some of the results of the measurements of temperature and wind speed carried out at the levels 10, 2, 0.5 and 0.05 m, during the IVth Antarctic Expedition of the Polish Academy of Sciences in March 1980, were used. The vertical gradients of the two elements and the wind stress and the heat flux in the layers under study, were calculated.
Przejdź do artykułu

Abstrakt

On the basis of the results of direct measurements, the conduction properties of the yearly behaviour of the halt flux conducted in the tundra soil (S) are determined. In general, the cooling period of the soil profile lasted from August to January, with highest intensity in October (S = —4.8 Wm-2). A rapid intensification of the heat exchange in the soil occurred in July (S = 7.4 Wm-2 ) . The 24-hour values of S were found to vary greatly (from 19 Wm-2 to 32 Wm-2). For chosen days, relationships were determined among the particular elements of the heat balance of the active layer.
Przejdź do artykułu

Abstrakt

The paper presents an experimental investigation of a silicone based heat exchanger, with passive heat transfer intensification by means of surface enhancement. The main objective of this paper was to experimentally investigate the performance of a heat exchanger module with the enhanced surface. Heat transfer in the test section has been examined and described with precise measurements of thermal and flow conditions. Reported tests were conducted under steady-state conditions for single-phase liquid cooling. Proposed surface modification increases heat flux by over 60%. Gathered data presented, along with analytical solutions and numerical simulation allow the rational design of heat transfer devices.
Przejdź do artykułu

Abstrakt

The paper discusses the possibility of improving resistance of heat exchangers made of gray cast iron with flake graphite to hightemperature corrosion by providing them with metallic coatings. A metallic coating containing 76.9% Ni, 19.8% Cr, 1.7% Si, 0.9% Fe, and 0.9% Mn was applied by means of the plasma spraying method and subjected to cyclically variable thermal loads in the atmosphere of solid fuels combustion products (oxygen, sulfur, chlorine, and sodium). In a 30-day thermal load test held at temperature 500°C it has been found that thickness of the metallic coating decreased from the initial (240 ± 6) μm to (231 ± 6) μm. The depth to which sulfur, chlorine, and sodium penetrated the coating was about 30 μm. Increased oxygen content occurred along the whole coating depth. In the coating area adjacent to the substrate surface, the content was twice as high compared to this observed in the initial coating material. Although presence of oxygen was found within the whole depth of the coating, i.e. (231 ± 6) μm, no signs of susceptibility of the sprayed metallic layer to separation from substrate of gray cast iron with flake graphite were found.
Przejdź do artykułu

Abstrakt

Helical coil heat exchangers are widely used in a variety of industry applications such as refrigeration systems, process plants and heat recovery. In this study, the effect of Reynolds number and the operating temperature on heat transfer coefficients and pressure drop for laminar flow conditions was investigated. Experiments were carried out in a shell and tube heat exchanger with a copper coiled pipe (4 mm ID, length of 1.7 m and coil pitch of 7.5 mm) in the temperature range from 243 to 273 K. Air – propan-2-ol vapor mixture and coolant (methylsilicone oil) flowed inside and around the coil, respectively. The fluid flow in the shell-side was kept constant, while in the coil it was varied from 6.6 to 26.6 m/s (the Reynolds number below the critical value of 7600). Results showed that the helical pipe provided higher heat transfer performance than a straight pipe with the same dimensions. The convective coefficients were determined using theWilson method. The values for the coiled pipe were in the range of 3–40 W/m2 ·K. They increased with increasing the gas flow rate and decreasing the coolant temperature.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji