Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 14
items per page: 25 50 75
Sort by:

Abstract

Applications in geodesy and engineering surveying require the determination of the heights of the vertical control points in the national and local networks using different techniques. These techniques can be classified as geometric, trigonometric, barometric and Global Positioning System (GPS) levelling. The aim of this study is to analyse height differences obtained from these three techniques using precise digital level and digital level, total station (trigonometric levelling) and GPS which collects phase and code observations (GPS levelling). The accuracies of these methods are analysed. The results obtained show that the precise digital levelling is more stable and reliable than the other two methods. The results of the three levelling methods agree with each other within a few millimetres. The different levelling methods are compared. Geometric levelling is usually accepted as being more accurate than the other methods. The discrepancy between geometric levelling and short range trigonometric levelling is at the level of 8 millimetres. The accuracy of the short range trigonometric levelling is due the reciprocal and simultaneous observations of the zenith angles and slope distances over relative short distances of 250 m. The difference between the ellipsoidal height differences obtained from the GPS levelling used without geoid and the orthometric height differences obtained from precise geometric levelling is 4 millimetres. The geoid model which is obtained from a fifth order polynomial fit of the project area is good enough in this study. The discrepancy between the precise geometric and GPS levelling (with geoid corrections) is 4 millimetres over 5 km.
Go to article

Abstract

Movement is one of the most spectacular phenomena involving glaciers. Deter- mining glacier surface velocity is now a routine aspect of glaciological studies. These are geodetic methods, especially satellite positioning, that most frequently is applied in such work. Using the Hans Glacier (SW Spitsbergen) as an example, the presented paper is an attempt at defining the time resolution limit of changes in the velocity determined using GPS positioning technology. A test network was established in the area of the examined glacier in order to define the size and variability of the main satellite positioning biases as well as to define their impact on determining position and the calculated velocity. A discussion relating to achieved accuracy (differentiated from measurement precision) for baselines of a length of several kilometres in the high latitudes has also been presented.
Go to article

Abstract

In the past it was usual to exert a huge effort in the design, simulation, and the real time implementation of the complicated electronic and communication systems, like GNSS receivers. The complexity of the system algorithms combined with the complexity of the available tools created a system that is difficult to track down for debugging or for redesign. So, the simulation and educational tools was different from the prototyping tools. In this paper the parallel search acquisition phase of a GPS receiver was simulated and implemented on FPGA using the same platform and through a graphical programming language. So this paper introduces the fruit of integrating the prototyping tools with the simulation tools as a single platform through which the complicated electronic systems can be simulated and prototyped.
Go to article

Abstract

The paper presents national report of Poland for IAG on positioning and applications. The selected research presented was carried out at leading Polish research institutions and concern precise multi-GNSS satellite positioning – relative and absolute – and also GNSS-based ionosphere and troposphere modelling and studies. The research resulted in noticeable advancements in these subjects confirmed by the development of new algorithms and methods. New and improved methods of precise GNSS positioning were developed, and also GNSS metrology was studied. New advanced troposphere models were presented and tested. In particular, these models allowed testing IPW variability on regional and global scales. Also, new regional ionosphere monitoring web-based services were developed and launched.
Go to article

Abstract

The presented preliminary research concerns the accuracy and reliability of new ultra-fast static positioning module – POZGEO-2 – in case of processing GPS data collected outside the ASG-EUPOS network. Such a case requires extrapolation of the network-derived atmospheric corrections which limits correction accuracy and, therefore, has adverse effect on the carrier phase ambiguity resolution. The presented processing tests are based on processing 5-minute long observing sessions and show that precise positioning can be supported up to 35 km from the ASG-EUPOS borders. This means that precise positioning with POZGEO-2 module can be assured for the most of the border areas of Poland.
Go to article

Abstract

The sequential method of integrating navigational parameters obtained from non-simultaneous navigational measurements is presented. The proposed algorithm of position coordinates estimation is general and includes two modes of data processing – from simultaneous and non-simultaneous measurements. It can be used in hybrid receivers of radionavigation systems integrating non-homogeneous position lines or in integrated navigation systems, particularly in receivers combining the measurements of various satellite navigation systems.
Go to article

Abstract

The paper deals with large-scale crustal deformation due to hydrological surface loads and its influence on seasonal variation of GPS estimated heights. The research was concentrated on the area of Poland. The deformation caused by continental water storage has been computed on the basis of WaterGAP Hydrological Model data by applying convolution of water masses with appropriate Green’s function. Obtained site displacements were compared with height changes estimated from GPS observations using the Precise Point Positioning (PPP) method. Long time series of the solutions for 4 stations were used for evaluation of surface loading phenomena. Good agreement both in amplitude and phase was found, however some discrepancies remain which are assigned to single point positioning technique deficiencies. Annual repeatability of water cycle and demanding procedure for computing site displacements for each site, allowed to develop a simple model for Poland which could be applied to remove (or highly reduce) seasonal hydrological signal from time series of GPS solutions.
Go to article

Abstract

GNSS systems are susceptible to radio interference despite then operating in a spread spectrum. The commerce jammers power up to 2 watts that can block the receiver function at a distance of up to 15 kilometers in free space. Two original methods for GNSS receiver testing were developed. The first method is based on the usage of a GNSS simulator for generation of the satellite signals and a vector signal RF generator for generating different types of interference signals. The second software radio method is based on a software GNSS simulator and a signal processing in Matlab. The receivers were tested for narrowband CW interference, FM modulated signal and chirp jamming signals and scenarios. The signal to noise ratio usually drops down to 27 dBc-Hz while the jamming to signal ratio is different for different types of interference. The chirp signal is very effective. The jammer signal is well propagated in free space while in the real mobile urban and suburban environment it is usually strongly attenuated.
Go to article

Abstract

The paper presents the results of real time measurements of test geodetic control network points using the RTK GPS and RTX Extended technologies. The Trimble RTX technology uses the xFill function, which enables real measurements without the need for constant connection with the ASG EUPOS system reference stations network. Comparative analyses of the results of measurements using the methods were performed and they were compared with the test control network data assumed to be error-free. Although the Trimble RTX technology is an innovative measurement method which is rarely used now, the possibilities it provides in surveying works, including building geodetic control networks, are satisfactory and it will certainly contribute to improving the organisation of surveying works.
Go to article

Abstract

Monitoring of permanent stations that make up the reference frame is an integral part of the geodesists work. Selection of reference stations is based on analysis of parameters characterizing them (hardware, coordinates’ stability, mounting, location). In this paper, we took into account phase residual as an indicator of unmodelled signal. Phase residuals were computed based on ASG-EUPOS and EPN observation processing. The results show the connection between the method of mounting the antenna and the residuals. We have reviewed multipath effect at ASG-EUPOS stations, and chosen those which are characterized by the highest value of phase residual. The results show that LC phase residual is a good factor to characterize site’s solutions’ reliability. For majority of sites RMS values were less than 10 mm. Modulations associated with multipath effect were observed for few ASG-EUPOS sites only. Phase residuals are distributed specifically for sites, which antennas are mounted on pillars (more common for EPN sites). For majority of analysed sites phase residual distribution was similar for different days and did not depend directly on atmosphere condition.
Go to article

Abstract

In this paper, two techniques for calculating the geoid-to-quasigeoid separation are employed. One of them is GPS/Levelling customary method as a criterion where the geoid undulation and height anomaly are computed by subtracting the ellipsoid height attained via GPS from the orthometric height and normal height, respectively. Another approach is Sjöberg’s equation. We have used of the ICGEM website for definition of the variables of the Sjöberg’s equation, as the applied reference model is the EGM2008 global geopotential model and WGS84 reference ellipsoid. The investigations are performed over the stations of the GPS/Leveling network related to three selected areas in desert, mountain and flatland namely the Lout, Zagros and Khuzestan in Iran and afterward the correlation coefficient between the geoid-to-quasigeoid separation calculated using the satellite data in Sjöberg’s equation and GPS/Levelling method is estimated. The results indicate a straight correlation between the estimated separations from the two methods as its value for the Lout is 0.754, for the Zagros is 0.497 and for the Khuzestan is 0.659. consequently, using the satellite data in Sjöberg’s equation for the regions where there are not the GPS/Levelling and land gravity data, specially for the even areas, yield a satisfactory response of the geoidto-quasigeoid separation.
Go to article

Abstract

This review paper presents research results on geodetic positioning and applications carried out in Poland, and related to the activities of the International Association of Geodesy (IAG) Commission 4 “Positioning and Applications” and its working groups. It also constitutes the chapter 4 of the national report of Poland for the International Union of Geodesy and Geodynamics (IUGG) covering the period of 2015-2018. The paper presents selected research, reviewed and summarized here, that were carried out at leading Polish research institutions, and is concerned with the precise multi-GNSS (Global Navigation Satellite Systems) satellite positioning and also GNSS-based ionosphere and troposphere modelling and studies. The research, primarily carried out within working groups of the IAG Commission 4, resulted in important advancements that were published in leading scientific journals. During the review period, Polish research groups carried out studies on multi-GNSS functional positioning models for both relative and absolute solutions, stochastic positioning models, new carrier phase integer ambiguity resolution methods, inter system bias calibration, high-rate GNSS applications, monitoring terrestrial reference frames with GNSS, assessment of the real-time precise satellite orbits and clocks, advances in troposphere and ionosphere GNSS remote sensing methods and models, and also their applications to weather, space weather and climate studies.
Go to article

Abstract

The paper expounds relevant results of some of the present author’s experi- ments defining the strapdown IMU sensors’ errors and their propagation into and within DGPS/IMU. In order to deal with this problem, the author conducted both the laboratory and field-based experiments. In the landborne laboratory the stand-alone Low-Cost IMU MotionPak MKII was verified in terms of the accelerometer bias, scale factor, gyroscope rotation parameters and internal temperature cross-correlations. The waterborne field-trials based on board dedicated research ships at the lake and at the busy small sea harbour were augmented by the landborne ones. These experiments conducted during the small, average, and high dynamics of movement provided comparative sole- GPS, stand-alone DGPS and integrated DGPS/IMU solution error analysis in terms of the accuracy and the smoothness of the solution. This error estimation was also carried on in the context of the purposely-erroneous incipient DGPS/IMU initialisation and alignment and further in the circumstances of on-flight alignment improvement in the absence of the signal outages. Moreover, the lake-waterborne tests conducted during extremely low dynamics of movement informed about the deterioration of the correctly initialised DGPS/IMU solution with reference to the stand-alone DGPS solution and sole- GPS solution. The above-mentioned field experiments have checked positively the DGPS /MKI research integrating software prepared during the Polish/German European Union Research Project and modified during the subsequent Project supported by the Polish Committee for Scientific Research.
Go to article

Abstract

An electronic system and an algorithm for estimating pedestrian geographic location in urban terrain is reported in the paper. Different sources of kinematic and positioning data are acquired (i.e.: accelerometer, gyroscope, GPS receiver, raster maps of terrain) and jointly processed by a Monte-Carlo simulation algorithm based on the particle filtering scheme. These data are processed and fused to estimate the most probable geographical location of the user. A prototype system was designed, built and tested with a view to aiding blind pedestrians. It was shown in the conducted field trials that the method yields superior results to sole GPS readouts. Moreover, the estimated location of the user can be effectively sustained when GPS fixes are not available (e.g. tunnels).
Go to article

This page uses 'cookies'. Learn more