Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

The paper presents the results of thermoanalytical studies by TG/DTG/DTA, FTIR and GC/MS for the oil sand used in art and precision foundry. On the basis of course of DTG and DTA curves the characteristic temperature points for thermal effects accompanying the thermal decomposition reactions were determined. This results were linked with structural changes occurred in sample. It has been shown that the highest weight loss of the sample at temperatures of about 320°C is associated with destruction of C-H bonds (FTIR). In addition, a large volume of gases and high amounts of compounds from the BTEX group are generated when liquid metal interacts with oil sand. The results show, that compared to other molding sands used in foundry, this material is characterized by the highest gaseous emissions and the highest harmfulness, because benzene emissions per kilogram of oil sand are more than 7 times higher than molding sand with furan and phenolic binders and green sand with bentonite and lustrous carbon carrier.
Go to article

Abstract

Suitability of the given binding agent for the moulding sands preparation depends on the one hand on the estimation of technological properties of the sand and the mould made of it and the obtained casting quality and on the other hand on the assessment of this sand influence on the natural and working environment. Out of moulding sands used in the foundry industry, sands with organic binders deserve a special attention. These binders are based on synthetic resins, which ensure obtaining the proper technological properties and sound castings, however, they negatively influence the environment. If in the initial state these resins are not very dangerous for people and for the environment, thus under an influence of high temperatures they generate very harmful products, being the result of their thermal decomposition. Depending on the kind of the applied resin (phenol-formaldehyde, urea, furfuryl, urea–furfuryl, alkyd) under an influence of a temperature such compounds as: furfuryl alcohol, formaldehyde, phenol, BTEX group (benzene, toluene, ethylbenzene, xylene), and also polycyclic aromatic hydrocarbons (PAH) can be formed and released. The aim of the study was the development of the method, selection of analytical methods and the determination of optimal conditions of formation compounds from the BTEX group. An emission of these components constitutes one of the basic criteria of the harmfulness assessment of binders applied for moulding and core sands. Investigations were carried out in the specially designed set up for the thermal decomposition of organic substances in a temperature range: 5000 C – 13000 C at the laboratory scale. The object for testing was alkyd resin applied as a binding material for moulding sands. Within investigations the minimal amount of adsorbent necessary for the adsorption of compounds released during the decomposition of the resin sample of a mass app. 15 mg was selected. Also the minimal amount of solvent needed for the desorption of compounds adsorbed in the column with adsorbent was found. The temperature range, in which the maximal amounts of benzene, toluene, ethylobenzene and xylenes are released from the resin, was defined. The qualitative and quantitative analyses of compounds from the BTEX group were performed by means of the gas chromatography combined with the mass spectrometry (GC/MS).
Go to article

Abstract

This study investigates the acaricidal, ovicidal, and repellent effects of the Tagetes patula Linn. (Asteraceae) leaf extract against both the adult female and egg stages of Tetranychus urticae Koch (Trombidiformes: Tetranychidae) under laboratory conditions. The Tagetes patula ethanolic leaf extract [TpEtOH70%] was screened for adulticide and ovicide bioassays in order to consider its acute toxicity. One sublethal concentration was used to assess egg-laying capacity (fecundity), repellent, and oviposition deterrent activities. The chemical characterization was conducted by gas chromatography-mass spectrometry (GC-MS) analysis to identify the TpEtOH70% bioactive components. Results showed that the LC50 value of TpEtOH70% leaf extract predicted by Probit analysis against T. urticae adult females at 24 h was 0.99%. The TpEtOH70% leaf extract showed a significant toxic effect as the highest mean mortality rates (± SE) of the treated adult females was 88.9 ± 3.7%. However, the TpEtOH70% leaf extract was insignificant in affecting the egg-laying capacity of the adult females treated with a sublethal dose of 0.5% even after 72 h. The TpEtOH70% leaf extract was classified repellent since the repellent index (RI) value was lower than 1 – SD. In addition, it had a high oviposition deterring effect based on a 100% reduction of the total number of eggs. The TpEtOH70% leaf extract had a significant ovicidal effect on T. urticae eggs, with 56.04% reduction in hatching. Five bioactive compounds from various classes of phytochemicals were identified in the TpEtOH70% leaf extract and the major compound was phytol (62.72%). This pioneering investigation reveals the adulticidal, ovicidal, and repellent activities of the TpEtOH70% leaf extract against T. urticae. A combination of multiple modes of action of different plant components may act alone or in synergism to delay the development of mite resistance.
Go to article

This page uses 'cookies'. Learn more