Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 27
items per page: 25 50 75
Sort by:

Abstract

The article presents the directions of foundry waste management, mainly used for spent foundry sands (SFS) and dust after the reclamation of this waste. An important aspect of environmental protection in foundry production is the reduction of the amount of generated waste as a result of SFS regeneration. The advantage is the reuse of waste, which reduces the costs of raw materials purchase and environmental fees for landfilling. Non -recycled spent foundry sands can be used in other industries. SFS is most often used in road and construction industries as well as inert material in closed mines (Smoluchowska and Zgut 2005; Bany-Kowalska 2006). An interesting direction of using SFS is its application in gardening and agriculture. The article presents the advantages and disadvantages of such use. It was found that spent foundry sands can be useful for the production of soil mixtures for many agricultural and horticultural applications. Due to the possibility of environmental pollution with heavy metals and organic compounds, such an application is recommended for the so-called green sands, i.e. SFS with mineral binders. In addition, an innovative solution for the energy use of dusts after spent foundry sands reclamation with organic binders has been discussed and proposed by some researchers. It was shown that dust from reclaimed SFS with organic binders can be used as an alternative fuel and raw material in cement kilns, due to the high percentage of organic substances which determine their calorific value and silica.
Go to article

Abstract

In this work, the influence of microwave drying parameters such as irradiation time and microwave power level on the properties of synthetic moulding sands is presented. Determination of compressive strength Rc s, shear strength Rt s and permeability Ps of synthetic moulding sands with the addition of two different bentonites, after drying process with variable microwave parameters were made. The research works were carried out using the microwave oven with regulated power range of the electromagnetic field. From the results obtained, the significant influence of both drying time and microwave power level on the selected properties of moulding sands was observed. In comparison to the conventional drying method, microwave drying allows to obtain higher compressive strength of the synthetic moulding sand. The influence of application microwave irradiation on permeability was not observed. Higher strength characteristics and shorter drying time are major advantages of application of the electromagnetic irradiation for drying of the synthetic moulding sand with regard to conventional drying method.
Go to article

Abstract

The paper focuses on investigation of properties of two most widely used self-set sand binder systems APNB and FNB across the Globe, for making molds and cores in foundries to produce castings of different sizes involving wide range of metals and alloys, ferrous and nonferrous. This includes study of compression strength values of samples made out of molding sand at different binder addition level using new, mechanically reclaimed (MR) and thermally reclaimed (TR) sand. Strength values studied include dry strength (at room temperature) at specified intervals simulating different stages of mold handling, namely stripping and pre heating, followed by degraded strength after application of thinner based zircon wash by brush, subsequent lighting of, then checking strength both in warm (degraded strength) & cold (recovered strength) conditions. Throughout the cycle of mold movement from stripping to knock out, strength requirements can be divided into two broad classifications, one from stripping to closing (dry strength) and another from pouring to knock out (hot & retained strength). Although the process for checking of dry strength are well documented, no method using simple equipments for checking hot & retained strength are documented in literature. Attempts have been made in this paper to use some simple methods to standardize process for checking high strength properties using ordinary laboratory equipments. Temperature of 450°C has been chosen by trial & error method to study high temperature properties to get consistent & amplified values. Volume of gases generated for both binders in laboratory at 850°C have also been measured. Nature of gases including harmful BTEX and PAH generated on pyrolysis of FNB and APNB bonded sands are already documented in a publication [1]. This exercise has once again been repeated in same laboratory, AGH University, Poland with latest binder formulations in use in two foundries in India.
Go to article

Abstract

The study evaluated the curing properties of natural silica sand moulded with 1% by weight Furotec 132 resin binder catalysed by Furocure CH Fast acid and Furocure CH Slow acid. Physical properties of this sand included an AFS number of 47.35, 4.40 % clay, 0 % magnetic components, 0.13 % moisture, and 64.5 % of the size distribution spread over three consecutive sieves (150 – 600 μm). The sand was washed repeatedly to remove all the clay and oven dried. 2 kg washed sand samples were mulled with pre-determined weights of either catalyst to give 30 %, 50 % and 70 % by weight of 20 g Furotec 132 resin which was added last. Furotec 132 resin + Furocure CH Slow acid catalyst system gives longer bench lives and strip times but the maximum compressive strength in excess of 5000 N/cm2 is attained after more than 8.5 hours curing time irrespective of the weight % of catalyst added relative to the resin. On that basis, exceeding 30 weight % Furocure CH Slow acid catalyst when sand moulding with Furotec 132 resin has neither technical nor economic justification. In comparison, the Furotec 132 resin + Furocure CH Fast acid catalyst system was only capable of producing mould specimens with maximum compressive strength above 5000 N/cm2 at 30 weight % catalyst addition rate. At 50 and 70 weight % catalyst addition rates, the mulled sand rapidly turned dark green then bluish with a significant spike in temperature to about 40 oC, far exceeding the optimum curing temperature of Furotec 132. This high temperature accelerates the curing rate but with a very low degree of resin curing which explains the low compressive strength. In fact the sand grains fail to bond and have a dry, crumbly texture implying dehydration. Thus, not more than 30 weight % Furocure CH Fast acid catalyst should be used in sand moulding.
Go to article

Abstract

Recently, some major changes have occurred in the structure of the European foundry industry, such as a rapid development in the production of castings from compacted graphite iron and light alloys at the expense of limiting the production of steel castings. This created a significant gap in the production of heavy steel castings (exceeding the weight of 30 Mg) for the metallurgical, cement and energy industries. The problem is proper moulding technology for such heavy castings, whose solidification and cooling time may take even several days, exposing the moulding material to a long-term thermal and mechanical load. Owing to their technological properties, sands with organic binders (synthetic resins) are the compositions used most often in industrial practice. Their main advantages include high strength, good collapsibility and knocking out properties, as well as easy mechanical reclamation. The main disadvantage of these sands is their harmful effect on the environment, manifesting itself at various stages of the casting process, especially during mould pouring. This is why new solutions are sought for sands based on organic binders to ensure their high technological properties but at the same time less harmfulness for the environment. This paper discusses the possibility of reducing the harmful effect of sands with furfuryl binders owing to the use of resins with reduced content of free furfuryl alcohol and hardeners with reduced sulphur content. The use of alkyd binder as an alternative to furfuryl binder has also been proposed and possible application of phenol-formaldehyde resins was considered.
Go to article

Abstract

In the paper, a research on effects of baking temperature on chromite sand base of moulding sands bonded with sodium silicate is presented. Pure chromite sand and its chromite-based moulding sand prepared with use of sodium silicate were subjected to heating within 100 to 1200 °C. After cooling-down, changes of base grains under thermal action were determined. Chromite moulding sand was prepared with use of 0.5 wt% of domestic made, unmodified sodium silicate (water-glass) grade 145. After baking at elevated temperatures, creation of rough layer was observed on grain surfaces, of both pure chromite sand and that used as base of a moulding sand. Changes of sand grains were evaluated by scanning microscopy and EDS analyses. It was found that changes on grain surfaces are of laminar nature. The observed layer is composed of iron oxide (II) that is one of main structural components of chromite sand. In order to identify changes in internal structure of chromite sand grains, polished sections were prepared of moulding sand hardened with microwaves and baked at elevated temperatures. Microscopic observations revealed changes in grains structure in form of characteristically crystallised acicular particles with limited magnesium content, intersecting at various angles. EDS analysis showed that these particles are composed mostly of chromium oxide (III) and iron oxide (II). The temperature above that the a.m. changes are observed in both chromite-based moulding sand and in pure chromite sand. The observed phenomena were linked with hardness values and mass of this sand.
Go to article

Abstract

In the paper, a research on effects of baking temperature on chromite sand base of moulding sands bonded with sodium silicate is presented. Pure chromite sand and its chromite-based moulding sand prepared with use of sodium silicate were subjected to heating within 100 to 1200 °C. After cooling-down, changes of base grains under thermal action were determined. Chromite moulding sand was prepared with use of 0.5 wt% of domestic made, unmodified sodium silicate (water-glass) grade 145. After baking at elevated temperatures, creation of rough layer was observed on grain surfaces, of both pure chromite sand and that used as base of a moulding sand. Changes of sand grains were evaluated by scanning microscopy and EDS analyses. It was found that changes on grain surfaces are of laminar nature. The observed layer is composed of iron oxide (II) that is one of main structural components of chromite sand. In order to identify changes in internal structure of chromite sand grains, polished sections were prepared of moulding sand hardened with microwaves and baked at elevated temperatures. Microscopic observations revealed changes in grains structure in form of characteristically crystallised acicular particles with limited magnesium content, intersecting at various angles. EDS analysis showed that these particles are composed mostly of chromium oxide (III) and iron oxide (II). The temperature above that the a.m. changes are observed in both chromite-based moulding sand and in pure chromite sand. The observed phenomena were linked with hardness values and mass of this sand.
Go to article

Abstract

The paper presents results of preliminary examinations on possibility of determining binder content in traditional moulding sands with the microwave method. The presented measurements were carried-out using a special stand, the so-called slot line. Binder content in thesandmix was determined by measurements of absorption damping Ad and insertion losses IL of electromagnetic wave. One of main advantages of the suggested new method of binder content measurement is short measuring time.
Go to article

Abstract

In the paper, presented is a research on effectiveness of absorbing electromagnetic waves at frequency 2.45 GHz by unhardened moulding sands prepared of three kinds of high-silica base and a selected grade of sodium silicate. Measurements of power loss of microwave radiation (Pin) expressed by a total of absorbed power (Pabs), output power (Pout) and reflected power (Pref) were carried-out on a stand of semiautomatic microwave slot line. Values of microwave power loss in the rectangular waveguide filled with unhardened moulding sands served for determining effectiveness of microwave heating. Balance of microwave power loss is of technological and economical importance for manufacture of high-quality casting moulds and cores of various shapes and sizes. It was found that relative density influences parameters of power output and power reflected from samples of moulding sand placed in a waveguide. Absorption expressed by the parameter Pabs is not related to granularity of high-silica base: fine, medium and coarse. It was found that the semiautomatic microwave slot line supports evaluation of effectiveness of microwave absorption on the grounds of power loss measurements and enables statistic description of influence of relative density of the sandmix on penetration of electromagnetic waves in unhardened moulding sands.
Go to article

Abstract

Moulding sands containing sodium silicate (water-glass) belong to the group of porous mixture with low resistance to increased humidity. Thanks to hydrophilic properties of hardened or even overheated binder, possible is application of effective methods of hydrous reclamation consisting in its secondary hydration. For the same reason (hydrophilia of the binder), moulds and foundry cores made of high-silica moulding sands with sodium silicate are susceptible to the action of components of atmospheric air, including the contained steam. This paper presents results of a research on the effect of (relative) humidity on mechanical and technological properties of microwave-hardened moulding mixtures. Specimens of the moulding sand containing 1.5 wt% of sodium water-glass with module 2.5 were subjected, in a laboratory climatic chamber, to long-term action of steam contained in the chamber atmosphere. Concentration of water in atmospheric air was stabilized for 28 days (672 h) according to the relative humidity parameter that was ca. 40%, 60% and 80% at constant temperature 20 °C. In three cycles of the examinations, the specimens were taken out from the chamber every 7 days (168 h) and their mechanical and technological parameters were determined. It was found on the grounds of laboratory measurements that moulds and cores hardened with microwaves are susceptible to action of atmospheric air and presence of water (as steam) intensifies action of the air components on glassy film of sodium silicate. Microwave-hardened moulding sands containing sodium silicate may be stored on a longterm basis in strictly determined atmospheric conditions only, at reduced humidity. In spite of a negative effect of steam contained in the air, the examined moulding mixtures maintain a part of their mechanical and technological properties, so the moulds and foundry cores stored in specified, controlled conditions could be still used in manufacture.
Go to article

Abstract

The paper presents the results of analyzes of gases emitted during exposure to high temperature foundry molding sands, where binders are organic resins. As a research tool has been used special gas chromatograph designed to identify odorous compounds including the group of alkanes.
Go to article

Abstract

This paper focuses on mechanical properties of self hardening moulding sands with furfuryl and alkyd binders. Elasticity as a new parameter of moulding sands is investigated. With the use of presented testing equipment, it is possible to determine force kinetics and deformation of moulding sand in real time. The need for this kind of study comes from the modern casting industry. New foundries can be characterized with high intensity of production which is correlated with high level of mechanization and automatization of foundry processes. The increasingly common use of manipulators in production of moulds and cores can lead to generation of new types of flaws, caused by breakage in moulds and cores which could occur during mould assembly. Hence it is required that moulds and cores have high resistance to those kinds of factors, attributing it with the phenomenon of elasticity. The article describes the theoretical basis of this property, presents methods of measuring and continues earlier research.
Go to article

Abstract

This paper presents a new perspective on the issue of reclamation of moulding and core sands. Taking as a premise that the reclamation process must remain on the surface of grains some not separated binding materials rests, it should be chosen the proper moulding sand’s composition that will be least harmful for the reclaim quality. There are two different moulding and core sands taken into examinations. The researches prove that a small correction of their compositions (hardener type) improves the quality of the received reclaims. Carried out in this article studies have shown that such an approach to the problem of reclamation of the moulding and core sands is needed and reasonable.
Go to article

Abstract

In the paper, an attempt is made to explain the previously observed increased effectiveness of utilising hydrated sodium water-glass grade 137 after hardening moulding sands with selected physical methods. In the modified process of preparing sandmixes, during stirring components, water as a wetting additive was introduced to the sand-binder system. Presented are examination results of influence of faster microwave heating and slower traditional drying of the so-prepared moulding sands on their tensile and bending strength, calculated per weight fraction of the binder. The measurement results were confronted with SEM observations of linking bridges and with chemical analyses of grain surfaces of high-silica base. On the grounds of comprehensive evaluation of hardened moulding sands, positive effects were found of the applied physical process of binder dehydration and presence of the wetting additive. It was observed that introduction of this additive during stirring, before adding the binder, improves flowing the binder to the places where durable linking bridges are created. It was also found that the applied methods of hardening by dehydration enable creation of very durable linking bridges, strongly connected with the sand base, which results in damages of high-silica grain surfaces, when the bridges are destroyed.
Go to article

Abstract

The constant growth of foundry modernization, mechanization and automation is followed with growing requirements for the quality and parameters of both moulding and core sands. Due to this changes it is necessary to widen the requirements for the parameters used for their quality evaluation by widening the testing of the moulding and core sands with the measurement of their resistance to mechanical deformation (further called elasticity). Following article covers measurements of this parameter in chosen moulding and core sands with different types of binders. It focuses on the differences in elasticity, bending strength and type of bond destruction (adhesive/cohesive) between different mixtures, and its connection to the applied bonding agent. Moulding and cores sands on which the most focus is placed on are primarily the self-hardening moulding sands with organic and inorganic binders, belonging to the group of universal applications (used as both moulding and core sands) and mixtures used in cold-box technology.
Go to article

Abstract

In this paper, crushability of foundry sand particles was studied. Three kinds of in-service silica sands in foundry enterprises selected as the study object, and foundry sand particles were subjected to mechanical load and thermal load during service were analyzed. A set of methods for simulating mechanical load and thermal load by milling and thermal-cold cycling were designed and researched, which were used to characterize the crushability for silica sand particles, the microstructure was observed by SEM. According to the user’s experience in actual application, the crushability of Sand C was the best and then Sand B, the last Sand A. The results indicated that mechanical load, thermal load and thermal-mechanical load can all be used to characterize the crushability of foundry sand particles. Microscopic appearances can qualitatively characterize the crushability of foundry sand particles to a certain extent, combining with the additions and cracks which are observed on the surface.
Go to article

Abstract

The paper presents the results of basic research on the influence of the properties of sand grains on electrical properties of water glass moulding sands. It shows electrical properties of the main component – sand grains, crucial to the kinetics of moulding sands heating, such as permittivity εr and loss factor tgδ. Measurements were carried out with the use of the perturbation method for silica, chromite and olivine sands of different mineral, chemical composition and particle size distribution, as well as for moulding sands with water glass grade 145. Analysis of the results of measurements of electrical properties shows that all moulding sands are characterized by a similar permittivity εr and loss factor tgδ. It was found that the electrical properties and the quantity and quality of other components may have a decisive influence on the effectiveness and efficiency of the microwave heating of moulding sands with sand grains. In determining the ability to efficiently absorb the microwave radiation for mixtures which moulding sands are, the impact of all components influencing their individual technological parameters should be taken into account.
Go to article

Abstract

This paper presents the impact of microwave penetration depth on the process of heating the moulding sand with sodium silicate. For each material it is affected by: the wavelength in vacuum and the real and imaginary components of the relative complex electrical permittivity εrfor a selected measurement frequency. Since the components are not constant values and they change depending on the electrical parameters of materials and the frequency of the electromagnetic wave, it is indispensable to carry out laboratory measurements to determine them. Moreover, the electrical parameters of materials are also affected by: temperature, packing degree, humidity and conductivity. The measurements of the dielectric properties of moulding sand with sodium silicate was carried out using the perturbation method on a stand of waveguide resonance cavity. The real and imaginary components of the relative complex electrical permittivity was determined for moulding sand at various contents of sodium silicate and at various packing degrees of the samples. On the basis of the results the microwave penetration depth of moulding sand with sodium silicate was established. Relative literature contains no such data that would be essential to predicting an effective process of microwave heating of moulding sand with sodium silicate. Both the packing degree and the amount of sodium silicate in moulding sand turned out to affect the penetration depth, which directly translates into microwave power density distribution in the process of microwave heating of moulding sand with sodium silicate.
Go to article

Abstract

Modern techniques of castings production, including moulding sands production, require a strict technological regime and high quality materials. In the case of self-hardening moulding sands with synthetic binders those requirements apply mainly to sand, which adds to more than 98% of the whole moulding sand mixture. The factors that affect the quality of the moulding sands are both chemical (SiO2 , Fe2O3 and carbonates content) and physical. Among these factors somewhat less attention is paid to the granulometric composition of the sands. As a part of this study, the effect of sand quality on bending strength Rgu and thermal deformation of self-hardening moulding sands with furfural and alkyd resin was assessed. Moulding sands with furfural resin are known [1] to be the most susceptible to the sand quality. A negative effect on its properties has, among others, high content of clay binder and so-called subgrains (fraction smaller than 0,1mm), which can lead to neutralization of acidic hardeners (in the case of moulding sands with furfuryl resin) and also increase the specific surface, what forces greater amount of binding agents. The research used 5 different quartz sands originating from different sources and characterized with different grain composition and different clay binder content.
Go to article

Abstract

The essence of ablation casting technology consists in pouring castings in single-use moulds made from the mixture of sand and a watersoluble binder. After pouring the mould with liquid metal, while the casting is still solidifying, the mould destruction (washing out, erosion) takes place using a stream of cooling medium, which in this case is water. This paper focuses on the selection of moulding sands with hydrated sodium silicate for moulds used in the ablation casting. The research is based on the use of Cordis binder produced by the Hüttenes-Albertus Company. It is a new-generation inorganic binder based on hydrated sodium silicate. Its hardening takes place under the effect of high temperature. As part of the research, loose moulding mixtures based on the silica sand with different content of Cordis binder and special Anorgit additive were prepared. The reference material was sand mixture without the additive. The review of literature data and the results of own studies have shown that moulding sand with hydrated sodium silicate hardened by dehydration is characterized by sufficient strength properties to be used in the ablation casting process. Additionally, at the Foundry Research Institute in Krakow, preliminary semi-industrial tests were carried out on the use of Cordis sand technology in the manufacture of moulds for ablation casting. The possibility to use these sand mixtures has been confirmed in terms of both casting surface quality and sand reclamation.
Go to article

Abstract

Presented are results of a research on the possibility of using artificial neural networks for forecasting mechanical and technological parameters of moulding sands containing water-glass, hardened in the innovative microwave heating process. Trial predictions were confronted with experimental results of examining sandmixes prepared on the base of high-silica sand, containing various grades of sodium water-glass and additions of a wetting agent. It was found on the grounds of obtained values of tensile strength and permeability that, with use of artificial neural networks, it is possible complex forecasting mechanical and technological properties of these materials after microwave heating and the obtained data will be used in further research works on application of modern analytic methods for designing production technology of high-quality casting cores and moulds.
Go to article

Abstract

The article shows the influence of environment requirements on changes in different foundry moulding sands technologies such as cold box, self-hardening moulding sands and green sands. The aim of the article is to show the possibility of using the biodegradable materials as binders (or parts of binders’ compositions) for foundry moulding and core sands. The authors concentrated on the possibility of preparing new binders consisting of typical synthetic resins - commonly used in foundry practice - and biodegradable materials. According to own research it is presumed that using biodegradable materials as a part of new binders’ compositions may cause not only lower toxicity and better ability to reclaim, but may also accelerate the biodegradation rate of used binders. What’s more, using some kinds of biodegradable materials may improve flexibility of moulding sands with polymeric binder. The conducted research was introductory and took into account bending strength and thermal properties of furan moulding sands with biodegradable material (PCL). The research proved that new biodegradable additive did not decrease the tested properties.
Go to article

Abstract

The paper undertakes an important topic of evaluation of effectiveness of SCADA (Supervisory Control and Data Acquisition) systems, used for monitoring and control of selected processing parameters of classic green sands used in foundry. Main focus was put on process studies of properties of so-called 1st generation molding sands in the respect of their preparation process. Possible methods of control of this processing are presented, with consideration of application of fresh raw materials, return sand (regenerate) and water. The studies conducted in one of European foundries were aimed at pointing out how much application of new, automated plant of sand processing incorporating the SCADA systems allows stabilizing results of measurement of selected sand parameters after its mixing. The studies concerned two comparative periods of time, before an implementation of the automated devices for green sands processing (ASMS - Automatic Sand Measurement System and MCM – Main Control Module) and after the implementation. Results of measurement of selected sand properties after implementation of the ASMS were also evaluated and compared with testing studies conducted periodically in laboratory.
Go to article

Abstract

The purpose of the presented experiment was to develop an effective water glass modifier. In the conducted research, an attempt was made to determine the effect of modifier addition on the wettability of quartz grains, viscosity and cohesion of binder and strength Rm U of the sand mixture. Water glass modification was carried out with, obtained in electrochemical process [1], colloidal suspension of ZnO nanoparticles in methanol (modifier I) or propanol (modifier II), characterised by a constant molar concentration of c = 0.3 M. It was demonstrated that the addition of a colloidal suspension of ZnO nanoparticles in propanol (modifier II) had a significant effect on wettability of quartz grains improvement without the accompanying increase in binder viscosity. Testing the mechanical properties Rm U of sand mixtures containing modified binder (modifier II) hardened at ambient conditions showed an approximately 28% increase in strength compared with the Rm U of the sand bonded with an unmodified binder.
Go to article

This page uses 'cookies'. Learn more