Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 2
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

Under steady-state conditions when fluid temperature is constant, temperature measurement can be accomplished with high degree of accuracy owing to the absence of damping and time lag. However, when fluid temperature varies rapidly, for example, during start-up, appreciable differences occur between the actual and measured fluid temperature. These differences occur because it takes time for heat to transfer through the heavy thermometer pocket to the thermocouple. In this paper, a method for determinig transient fluid temperature based on the first-order thermometer model is presented. Fluid temperature is determined using a thermometer, which is suddenly immersed into boiling water. Next, the time constant is defined as a function of fluid velocity for four sheated thermocouples with different diameters. To demonstrate the applicability of the presented method to actual data where air velocity varies, the temperature of air is estimated based on measurements carried out by three thermocouples with different outer diameters. Lastly, the time constant is presented as a function of fluid velocity and outer diameter of thermocouple.
Przejdź do artykułu

Abstrakt

This paper proposes a practical tuning of closed loops with model based predictive control. The data assumed to be known from the process is the result of the bump test commonly applied in industry and known in engineering as step response data. A simplified context is assumed such that no prior know-how is required from the plant operator. The relevance of this assumption is very realistic in the context of first time users, both for industrial operators and as educational competence of first hand student training. A first order plus dead time is approximated and the controller parameters immediately follow by heuristic rules. Analysis has been performed in simulation on representative dynamics with guidelines for the various types of processes. Three single-input-single-output experimental setups have been used with no expert users available in different locations – both educational and industrial – these setups are representative for practical cases: a variable time delay dominant system, a non-minimum phase system and an open loop unstable system. Furthermore, in a multivariable control context, a train of separation columns has been tested for control in simulation, followed by experimental tests on a laboratory system with similar dynamics, i.e. a sextuple coupled water tank system. The results indicate the proposed methodology is suitable for hands-on tuning of predictive control loops with some limitations on performance and multivariable process control.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji