Search results

Filters

  • Journals
  • Date

Search results

Number of results: 29
items per page: 25 50 75
Sort by:

Abstract

The paper presents the method of preparing a composite slurry composed of AlSi11 alloy matrix and 10 vol.% of SiC particles, as well as the method of its high-pressure die casting and the measurement results concerning the castability of the obtained composite. Composite castings were produced at various values of the piston velocity in the second stage of injection, diverse intensification pressure values, and various injection gate width values. There were found the regression equations describing the change of castability of the examined composite as a function of pressure die casting process parameters. The conclusion gives the analysis and the interpretation of the obtained results.
Go to article

Abstract

The method of pressure die casting of composites with AlSi11 alloy matrix reinforced with 10 vol. % of SiC particles and the analysis of the distribution of particles within the matrix is presented. The composite castings were produced at various values of the piston velocity in the second stage of injection, at diverse intensification pressure values, and various injection gate width values. The distribution of particles over the entire cross-section of the tensile specimen is shown. The index of distribution was determined on the basis of particle count in elementary measuring fields. The regression equation describing the change of the considered index was found as a function of the pressure die casting parameters. The conclusion presents an analysis of the obtained results and their interpretation.
Go to article

Abstract

The measurement results concerning the abrasive wear of AlSi11-SiC particles composites are presented in paper. The method of preparing a composite slurry composed of AlSi11 alloy matrix and 10, 20% vol.% of SiC particles, as well as the method of its highpressure die casting was described. Composite slurry was injected into metal mould of cold chamber pressure die cast machine and castings were produced at various values of the piston velocity in the second stage of injection, diverse intensification pressure values, and various injection gate width values. Very good uniform arrangement of SiC particles in volume composite matrix was observed and these results were publicated early in this journal. The kinetics of abrasive wear and correlation with SiC particles arrangement in composite matrix were presented. Better wear resistance of composite was observed in comparison with aluminium alloy. Very strong linear correlation between abrasive wear and particle arrangement was observed. The conclusion gives the analysis and the interpretation of the obtained results.
Go to article

Abstract

The paper presents the method of preparing a composite slurry composed of AlSi11 alloy matrix and 10 vol.% of SiC particles, as well as the method of its high-pressure die casting and the measurement results concerning the tensile strength, the yield point, the elongation and hardness of the obtained composite. Composite castings were produced at various values of the piston velocity in the second stage of injection, diverse intensification pressure values, and various injection gate width values. There were found the regression equations describing the change of mechanical properties of the examined composite as a function of pressure die casting process parameters. The conclusion gives the analysis and the interpretation of the obtained results.
Go to article

Abstract

Homogeneity of die castings is influenced by wide range of technological parameters as piston velocity in filling chamber of die casting machine, filling time of mould cavity, temperature of cast alloy, temperature of the mould, temperature of filling chamber, surface pressure on alloy during mould filling, final pressure and others. Based on stated parameters it is clear, that main parameters of die casting are filling time of die mould cavity and velocity of the melt in the ingates. Filling time must ensure the complete filling of the mould cavity before solidification process can negatively influence it. Among technological parameters also belong the returning material, which ratio in charge must be constrained according to requirement on final homogeneity of die castings. With the ratio of returning material influenced are the mechanical properties of castings, inner homogeneity and chemical composition.
Go to article

Abstract

Recent research in the process of aluminum alloy die castings production, which is nowadays deeply implemented into the rapidly growing automobile, shipping and aircraft industries, is aimed at increasing the useful qualitative properties of the die casting in order to obtain its high mechanical properties at acceptable economic cost. Problem of technological factors of high pressure die casting has been a subject of worldwide research (EU, US, Japan, etc.). The final performance properties of die castings are subjected to a large number of technological factors. The main technological factors of high pressure die casting are as follows: plunger pressing speed, specific (increase) pressure, mold temperature as well as alloy temperature. The contribution discusses the impact of the plunger pressing speed and specific (increase) pressure on the mechanical properties of the casting aluminum alloy.
Go to article

Abstract

Experimental Mg-Al-RE type magnesium alloys for high-pressure die-casting are presented. Alloys based on the commercial AM50 magnesium alloy with 1, 3 and 5 mass % of rare earth elements were fabricated in a foundry and cast in cold chamber die-casting machines. The obtained experimental casts have good quality surfaces and microstructure consisting of an α(Mg)-phase, Al11RE3, Al10RE2Mn7 intermetallic compound and small amount of α+γ eutectic and Al2RE phases.
Go to article

Abstract

Magnesium alloys are one of the lightest of all the structural materials. Because of their excellent physical and mechanical properties the alloys have been used more and more often in various branches of industry. They are cast mainly (over 90%) on cold and hot chamber die casting machines. One of the byproducts of casting processes is process scrap which amounts to about 40 to 60% of the total weight of a casting. The process scrap incorporates all the elements of gating systems and fault castings. Proper management of the process scrap is one of the necessities in term of economic and environmental aspects. Most foundries use the process scrap, which involves adding it to a melting furnace, in a haphazard way, without any control of its content in the melt. It can lead to many disadvantageous effects, e.g. the formation of a hard buildup at the bottom of the crucible, which in time makes casting impossible due to the loss of the alloy rheological properties. The research was undertaken to determine the effect of an addition of the process scrap on the mechanical properties of AZ91 and AM50 alloys. It has been ascertained that the addition of a specific amount of process scrap to the melt increases the mechanical properties of the elements cast from AZ91 and AM50 alloys. The increase in the mechanical properties is caused mainly by compounds which can work as nuclei of crystallization and are introduced into the scrap from lubricants and anti-adhesive agents. Furthermore carbon, which was detected in the process scrap by means of SEM examination, is a potent grain modifier in Mg alloys [1-3]. The optimal addition of the process scrap to the melt was determined based on the statistical analysis of the results of studies of the effect of different process scrap additions on the mean grain size and mechanical properties of the cast parts.
Go to article

Abstract

This paper presents the effect of the temperature and hold time in the holding furnace of 226 silumin on the characteristic quantities of TDA curves. The temperature of phase transformations and the cooling rate were tested.It has been shown that increasing both the hold time and the temperature in the holdingfurnace cause the decreasethe end ofα+Al9Fe3Si2+β and α+Al2Cu+βternary eutectics crystallizationtemperature in the tested silumin. This is due to the fact an increase in amounts of impurities as a result of reacting theliquid alloy with the gases contained in the air.It has been shown, however, that examined technological factors ofthe metal preparation do not cause systematic changes in the cooling rate.
Go to article

Abstract

The presented work is aimed to deal with the influence of changes in the value of negative (relative) pressure maintained in the die cavity of pressure die casting machine on the surface quality of pressure castings. The examinations were held by means of the modified Vertacast pressure die casting machine equipped with a vacuum system. Castings were produced for the parameters selected on the basis of previous experiments, i.e. for the plunger velocity in the second stage of injection at the level of 4 m/s, the pouring temperature of the alloy equal to 640°C, and the die temperature of 150°C. The examinations were carried on for three selected values of negative gauge pressure: - 0.03, - 0.05, and - 0.07 MPa. The quality of casting was evaluated by comparing the results of the surface roughness measurements performed for randomly selected castings. The surface roughness was measured by means of Hommel Tester T1000. After a series of measurements it was found that the smoothest surface is exhibited by castings produced at negative gauge pressure value of - 0.07 MPa.
Go to article

Abstract

The work is a continuation of research concerning the influence of intensive cooling of permanent mold in order to increase the casting efficiency of aluminium alloys using the multipoint water mist cooling system. The paper presents results of investigation of crystallization process and microstructure of synthetic hypereutectic alloys: AlSi15 and AlSi19. Casts were made in permanent mold cooled with water mist stream. The study was conducted for unmodified silumins on the research station allowing the cooling of the special permanent probe using a program of computer control. Furthermore the study used a thermal imaging camera to analyze the solidification process of hypereutectic silumins. The study demonstrated that the use of mold cooled with water mist stream allows in wide range the formation of the microstructure of hypereutectic silumins. It leads to higher homogeneity of microstructure and refinement of crystallizing phases and also it increases subsequently the mechanical properties of casting.
Go to article

Abstract

The work is a continuation of research on the use water mist cooling in order to increase efficiency of die-casting aluminum alloys. The paper presents results of research and analysis process, spraying water and generated a stream of water mist, the effect of the type of nozzle, the nozzle size and shape of the emitting of the water mist on the wall surface of casting die on the microstructure and geometry of water mist stream and cooling efficiency. Tests were used to perform high-speed camera to record video in the visible and infrared camera. Results were used to develop a computerized image analysis and statistical analysis. The study showed that there are statistical relationships between water and air flow and geometry of the nozzle and nozzle emitting a stream of microstructure parameters of water mist and heat the incoming stream. These relationships are described mathematical models that allow you to control the generating of adequate stream of water mist and a further consequence, the cooling efficiency of casting die.
Go to article

Abstract

The work is a continuation of research on the use water mist cooling in order to increase efficiency of die-casting aluminum alloys using multipoint water mist cooling system. The paper presents results of investigation of crystallization process and microstructure of synthetic hypereutectic AlSi20 alloy. Casts were made in permanent mold cooled with water mist stream. The study was conducted for unmodified AlSi20 alloy and modified with phosphorus, titanium and boron on the research station allowing sequential multipoint cooling using a dedicated program of computer control. The study demonstrated that the use of mold cooled with water mist stream allows the formation of the microstructure of hypereutectic silumins. A wide range of solidification temperature of hypereutectic silumins increases the potential impact of changes in the cooling rate on a size, a number and a morphology of preeutectic silicon and eutectic α+β (Al+Si).
Go to article

Abstract

Development of salt cores prepared by high-pressure squeezing and shooting with inorganic binders has shown a high potential of the given technology even for high-pressure casting of castings. Strength, surface quality of achieved castings, and solubility in water become a decisive criterion. The shape and quality of grain surface particularly of NaCl – cooking salts that can be well applied without anticaking additives has shown to be an important criterion. Thus the salt cores technology can cover increasingly growing demands for casting complexity especially for the automobile industry.
Go to article

Abstract

The work is a continuation of research on the use of water mist cooling in order to increase efficiency of die-casting aluminum alloys using multipoint water mist cooling system. The paper presents results of investigation on crystallization process and microstructure of synthetic hypereutectic AlSi20 alloy. Casts were made in permanent mold cooled a with water mist stream. The study was conducted for unmodified AlSi20 alloy and a modified one with phosphorus, titanium and boron on the research station allowing sequential multipoint cooling using a dedicated program of computer control. The study demonstrated that the use of mold cooled with water mist stream and solution heat treatment allows in wide range for the formation of the microstructure of hypereutectic silumins. It leads to the growth of microstructure refinement and spheroidizing of phases in the casting.
Go to article

Abstract

The work is a continuation of research on the use of water mist cooling in order to increase efficiency of the die-casting process for aluminum alloys. The paper describes the multipoint sequential cooling system of the casting die and its computer control and monitoring. It also includes results of the tests and analysis of cooling methods during making of the casting. These methods differ from each other in the sequence of casting die cooling and cause effective changes in microstructure and mechanical properties of castings made of AlSi11 alloy. The study demonstrated that the use of multipoint sequential cooling with water mist affects the microstructure refinement and reduces the segregation in the cast as well as more than by 20% increases the mechanical properties of castings in the rough state. The study also demonstrates that the sequential cooling of casting die accelerates the cooling of the casting and shortens die-casting cycle.
Go to article

Abstract

The paper presents the results of the application of a statistical analysis to evaluate the effect of the chemical composition of the die casting Al-Si alloys on its basic mechanical properties. The examinations were performed on the hypoeutectic Al-Si alloy type EN AC-46000 and, created on its basis, a multi-component Al-Si alloy containing high-melting additions Cr, Mo, W and V. The additions were introduced into the base Al-Si alloy in different combinations and amounts (from 0,05% to 0,50%). The tensile strength Rm; the proof stress Rp0,2; the unit elongation A and the hardness HB of the examined Al-Si alloys were determined. The data analysis and the selection of Al-Si alloy samples without the Cr, Mo, W and V additions were presented; a database containing the independent variables (Al-Si alloy's chemical composition) and dependent variables (Rm; Rp0,2; A and HB) for all the considered variants of Al-Si alloy composition was constructed. Additionally, an analysis was made of the effect of the Al-Si alloy's component elements on the obtained mechanical properties, with a special consideration of the high-melting additions Cr, Mo, V and W. For the optimization of the content of these additions in the Al-Si alloy, the dependent variables were standardized and treated jointly. The statistical tools were mainly the multivariate backward stepwise regression and linear correlation analysis and the analysis of variance ANOVA. The statistical analysis showed that the most advantageous effect on the jointly treated mechanical properties is obtained with the amount of the Cr, Mo, V and W additions of 0,05 to 0,10%.
Go to article

Abstract

This article presents the results of studies in the hypoeutectic silumin destined for pressure die casting with the simultaneous addition of chromium and tungsten. The study involved the derivative and thermal analysis of the crystallization process, metallographic analysis and mechanical properties testing. Silumin 226 grade was destined for studies. It is a typical silumin to pressure die casting. AlCr15 and AlW8 preliminary alloys were added to silumin. Its quantity allowed to obtain 0.1, 0.2, 0.3 and 0.4% of Cr and W in the tested alloy. Studies of the crystallization process as well as the microstructure of the silumin poured into DTA sampler allowed to state the presence of additional phase containing 0.2% or more Cr and W. It has not occurred in silumin without the addition of above mentioned elements. It is probably the intermetallic phase containing Cr and W. DTA studies have shown this phase crystallizes at a higher temperature range than α (Al) solid solution. In the microstructure of each pressure die casting containing Cr and W the new phases formed. Mechanical properties tests have shown Cr and W additives in silumin in an appropriate amount may increase its tensile strength Rm (about 11%), the yield strength Rp0.2 (about 21%) and to a small extent elongation A.
Go to article

Abstract

The paper presents the results of hypoeutectic silumin 226 grade and silumin produced on its basis through the addition of V and Mo. Vanadium and molybdenum were added as the preliminary alloy AlV10 and AlMo8 in an amount providing the concentration of 0.1; 0.2; 0.3 and 0.4% V and Mo. TDA curves of tested silumins were presented; regardless of the chemical composition there were similar thermal effects. Pressure castings microstructure research revealed the presence in silumins with the addition of V and Mo phases do not occur in silumin without these additives. These phases have a morphology similar to the walled, and their size increases with increasing concentration of V and Mo. The size of the precipitates of these phases silumin containing 0.1% V and Mo does not exceed 10 microns, while 0.4% of the content of these elements increases to about 80 microns. Tests of basic mechanical properties of silumins were carried out. It has been shown that the highest values of tensile strength Rm = 295 MPa and elongation A = 4.2% have silumin containing approximately 0.1% V and Mo. Increasing concentrations of these elements causes a gradual lowering of the Rm and A values.
Go to article

Abstract

This paper presents the results of hypoeutectic 226 grade alloy as well as prepared on its basis Al-Si alloy containing Cr, V and Mo. The additives tested were added as AlCr15, AlV10 and AlMo8 master alloys. Alloys tested were poured into DTA sampler as well as using pressure die casting. An amount of Cr, V and Mo additives in alloy poured into DTA sampler comprised within the range approximately 0.05-0.35%. Alloys to pressure die casting contained 0.05-0.20% Cr, V and Mo. The crystallization process was examined using the derivative thermal analysis (DTA). The microstructure of castings made in the DTA sampler as well as castings made with use of pressure die casting were examined. The basic mechanical properties of castings made using pressure die casting were defined too. It has been shown in the DTA curves of Al-Si alloy containing approximately 0.30 and 0.35% Cr, Mo, and V there is an additional thermal effect probably caused by a peritectic crystallization of intermetallic phases containing the aforementioned additives. These phases have a morphology similar to the walled and a relatively large size. The analogous phases also occur in pressure die casting alloys containing 0.10% or more additions of Cr, V and Mo. The appearance of these phases in pressure die casting Al-Si alloys coincides with a decrease in the value of the tensile strength Rm and the elongation A. It has been shown die castings made of Al-Si alloys containing the aforementioned additives have a higher Rm and A than 226 alloy.
Go to article

Abstract

The present work discusses results of increased temperature on shape-dimensional changes of a 110 type hose coupling, produced from EN AC-AlSi11 alloy with the use of pressure die casting technology. The castings were soaked for 3.5 h at temperatures 460°C, 475°C and 490°C. The verification of shape-dimensional accuracy of the elements after soaking treatment, in relation to raw casting, was carried out by comparing the 3D models received from 3D scanning. Soaking temperature of about 460°C-475°C results in no significant changes in the shapes and dimensions of the castings, or surface defects in the form of blisters, which can be seen at a temperature of 490°C.
Go to article

Abstract

The work is a continuation of research concerning the influence of intensive cooling of permanent mold in order to increase the casting efficiency of aluminium alloys using the multipoint water mist cooling system. The paper presents results of investigation of crystallization process and microstructure of multicomponent synthetic hypereutectic alloy AlSi20CuNiCoMg. The study was conducted for unmodified silumin on the research station allowing the cooling of the special permanent sampler using a program of computer control. Furthermore, the study used a thermal imaging camera to analyze the solidification process of multicomponent alloy. The study demonstrated that the use of mold cooled with water mist stream allows in wide range to form the microstructure of hypereutectic multicomponent silumin. It leads to higher homogeneity of microstructure and refinement of crystallizing phases of casting.
Go to article

Abstract

Nowadays, the most popular production method for manufacturing high quality casts of aluminium alloys is the hot and cold chamber die casting. Die casts made of hypereutectoid silumin Silafont 36 AlSi9Mg are used for construction elements in the automotive industry. The influence of the metal input and circulating scrap proportion on porosity and mechanical properties of the cast has been examined and the results have been shown in this article. A little porosity in samples has not influenced the details strength and the addition of the circulating scrap has contributed to the growth of the maximum tensile force. Introducing 80% of the circulating scrap has caused great porosity which led to reduce the strength of the detail. The proportion of 40% of the metal input and 60% of the circulating scrap is a configuration safe for the details quality in terms of porosity and mechanical strength.
Go to article

Abstract

The work presents the investigation results concerning the structure of composite pressure die castings with AlSi11 alloy matrix reinforced with SiC particles. Examination has been held for composites containing 10 and 20 volume percent of SiC particles. The arrangement of the reinforcing particles within the matrix has been qualitatively assessed in specimens cut out of the castings. The index of distribution was determined on the basis of particle count in elementary measuring fields. The tensile strength, the yield point and elongation of the obtained composite were measured. Composite castings were produced at various values of the piston velocity in the second stage of injection, diverse intensification pressure values, and various injection gate width values. The regression equation describing the change of the considered arrangement particles index and mechanical properties were found as a function of the pressure die casting parameters. The infuence of particle arrangement in composite matrix on mechanical properties these material was examined and the functions of correlations between values were obtained. The conclusion gives the analysis and the interpretation of the obtained results.
Go to article

Abstract

The paper presents the results of investigations concerning the influence of negative (relative) pressure in the die cavity of high pressure die casting machine on the porosity of castings made of AlSi9Cu3 alloy. Examinations were carried out for the VertaCast cold chamber vertical pressure die casting machine equipped with a vacuum system. Experiments were performed for three values of the applied gauge pressure: -0.3 bar, -0.5 bar, and -0.7 bar, at constant values of other technological parameters, selected during the formerly carried initial experiments. Porosity of castings was assessed on the basis of microstructure observation and the density measurements performed by the method of hydrostatic weighing. The performed investigation allowed to find out that – for the examined pressure range – the porosity of castings decreases linearly with an increase in the absolute value of negative pressure applied to the die cavity. The negative pressure value of -0.7 bar allows to produce castings exhibiting porosity value less than 1%. Large blowholes arisen probably by occlusion of gaseous phase during the injection of metal into the die cavity, were found in castings produced at the negative pressure value of -0.3 bar. These blowholes are placed mostly in regions of local thermal centres and often accompanied by the discontinuities in the form of interdendritic shrinkage micro-porosity. It was concluded that the high quality AlSi9Cu3 alloy castings able to work in elevated temperatures can be achieved for the absolute value of the negative pressure applied to the die cavity greater than 0.5 bar at the applied set of other parameters of pressure die casting machine work.
Go to article

This page uses 'cookies'. Learn more