Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:

Abstract

This article presents a case study of a large wedge failure. It took place during excavation of the last bench of storage cavern with an approximate dimension of 80 m long having a depth of 8 m. The adopted intervention followed a structured approach, which included immediate rock support, geotechnical and geological investigations in the failure zone and design modifications. Back analyses of the failure zone were also carried out to assess design parameters with observed geological conditions. Re assessment in the failure zone was carried out using modified design parameters, which included shorter benches, rock support installation schemes such as longer rock bolts, reinforced ribs of shotcrete and reduced construction advances. Geotechnical monitoring in and around failure zone were carried out for recording any alarming movements in the rock mass. Initially, geotechnical monitoring was carried out in the recently excavated zone of the cavern on a daily basis. Based on continuous monitoring data for at least one week, the frequency of subsequent monitoring can be decided. In most cases the deformation of rock mass was considerably less than the alarming values which were calculated based on detailed design for different rock classes. The paper discusses the failure, investigation, cause, assessment and remedial measures to complete the construction of cavern.
Go to article

Abstract

The primary aim of this research study was to model acoustic conditions of the Courtyard of the Gdańsk University of Technology Main Building, and then to design a sound reinforcement system for this interior. First, results of measurements of the parameters of the acoustic field are presented. Then, the comparison between measured and predicted values using the ODEON program is shown. Collected data indicate a long reverberation time which results in poor speech intelligibility. Then, a thorough analysis is perform to improve the acoustic properties of the model of the interior investigated. On the basis of the improved acoustic model two options of a sound reinforcement system for this interior are proposed, and then analyzed. After applying sound absorbing material it was noted that the predicted speech intelligibility increased from bad/poor rating to good category.
Go to article

Abstract

An application specific integrated design using Quadrature Linear Discriminant Analysis is proposed for automatic detection of normal and epilepsy seizure signals from EEG recordings in epilepsy patients. Five statistical parameters are extracted to form the feature vector for training of the classifier. The statistical parameters are Standardised Moment, Co-efficient of Variance, Range, Root Mean Square Value and Energy. The Intellectual Property Core performs the process of filtering, segmentation, extraction of statistical features and classification of epilepsy seizure and normal signals. The design is implemented in Zynq 7000 Zc706 SoC with average accuracy of 99%, Specificity of 100%, F1 score of 0.99, Sensitivity of 98% and Precision of 100 % with error rate of 0.0013/hr., which is approximately zero false detection.
Go to article

Abstract

At the early stage of information system analysis and design one of the challenge is to estimate total work effort needed, when only small number of analysis artifacts is available. As a solution we propose new method called SAMEE – Simple Adaptive Method for Effort Estimation. It is based on the idea of polynomial regression and uses selected UML artifacts like use cases, actors, domain classes and references between them. In this paper we describe implementation of this method in Enterprise Architect CASE tool and show simple example how to use it in real information system analysis.
Go to article

This page uses 'cookies'. Learn more