Search results

Filters

  • Journals
  • Date

Search results

Number of results: 4
items per page: 25 50 75
Sort by:

Abstract

The paper describes second order generalized integrator (sogi) which is specialized in band-pass filtering and orthogonalization of periodic signals. Modifications of the structure and the influence of parameters on the system performance is described. The article highlights the particular importance of model discretization method in the practical implementation, as well as reviews estimation methods of the: amplitude, frequency, offset and phase angle of the periodic signal. Examples of simulation and experimental results are presented.
Go to article

Abstract

A prototype of a DSP-based instrument for in-service transmitter power measurements is presented. The instrument implements a signal-selective algorithm for power measurements that is suitable for use in wireless environments, where possible uncontrolled interfering sources are present in the radio channel and are overlapped to the signal emitted by the transmitter under test, possibly in both time and frequency domain. The measurement method exploits the principles of cyclic spectral analysis, which are briefly recalled in the paper. Potentialities, as well as limitations of the prototype use are discussed, and the results of experiments with both modulated and unmodulated interfering sources are presented.
Go to article

Abstract

The work presents the results of experimental study on the possibilities of determining the source of an ultrasonic signal in two-dimensional space (distance, horizontal angle). During the research the team used a self-constructed linear array of MEMS microphones. Knowledge in the field of sonar systems was utilized to analyse and design a location system based on a microphone array. Using the above mentioned transducers and broadband ultrasound sources allows a quantitative comparison of estimation of the location of an ultrasonic wave source with the use of broadband modulated signals (modelled on bats' echolocation signals) to be performed. During the laboratory research the team used various signal processing algorithms, which made it possible to select an optimal processing strategy, where the sending signal is known.
Go to article

Abstract

The work presents a structural and functional model of a distributed low level radio frequency (LLRF) control, diagnostic and telemetric system for a large industrial object. An example of system implementation is the European TESLA-XFEL accelerator. The free electron laser is expected to work in the VUV region now and in the range of X-rays in the future. The design of a system based on the FPGA circuits and multi-gigabit optical network is discussed. The system design approach is fully parametric. The major emphasis is put on the methods of the functional and hardware concentration to use fully both: a very big transmission capacity of the optical fiber telemetric channels and very big processing power of the latest series of DSP/PC enhanced and optical I/O equipped, FPGA chips. The subject of the work is the design of a universal, laboratory module of the LLRF sub-system. The current parameters of the system model, under the design, are presented. The considerations are shown on the background of the system application in the hostile industrial environment. The work is a digest of a few development threads of the hybrid, optoelectronic, telemetric networks (HOTN). In particular, the outline of construction theory of HOTN node was presented as well as the technology of complex, modular, multilayer HOTN system PCBs. The PCBs contain critical sub-systems of the node and the network. The presented exemplary sub-systems are: fast optical data transmission of 2.5 Gbit/s, 3.125 Gbit/s and 10 Gbit/s; fast A/C and C/A multichannel data conversion managed by FPGA chip (40 MHz, 65 MHz, 105 MHz), data and functionality concentration, integration of floating point calculations in the DSP units of FPGA circuit, using now discrete and next integrated PC chip with embedded OS; optical distributed timing system of phase reference; and 1GbEth video interface (over UTP or FX) for CCD telemetry and monitoring. The data and functions concentration in the HOTN node is necessary to make efficient use of the multigigabit optical fiber transmission and increasing the processing power of the FPGA/DSP/PC chips with optical I/O interfaces. The experiences with the development of the new generation of HOTN node based on the new technologies of data and functions concentration are extremely promising, because such systems are less expensive and require less labour.
Go to article

This page uses 'cookies'. Learn more