Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:

Abstract

The image analysis consists in extracting from the information which is available to the observer of the part that is important from the perspective of the investigated process. This process usually accompanies a considerable reduction in the amount of information from the image. In the field of two-phase flows, computer image analysis can be used to determine flow and geometric parameters of flow patterns. This article presents the possibilities of using this method to determine the void fraction, vapor quality, bubble velocity and the geometric dimensions of flow patterns. The use of computer image analysis methods is illustrated by the example of HFE 7100 refrigerant methoxynonafluorobutane condensation in a glass tubular minichannel. The high speed video camera was used for the study, and the films and individual frames received during the study were analyzed.
Go to article

Abstract

Proposed is the analysis of steam condensation in the presence of inert gases in a power plant condenser. The presence of inert, noncondensable gases in a condenser is highly undesirable due to its negative effect on the efficiency of the entire cycle. In general, thermodynamics has not provided an explicit criterion for assessing the irreversible heat transfer process. The method presented here enables to evaluate precisely processes occurring in power plant condensers. This real process is of particular interest as it involves a number of thermal layers through which heat transfer is observed. The analysis was performed using a simple, known in the literature and well verified Berman’s model of steam condensation in the presence of non-condensable gases. Adapted to the geometry of the condenser, the model enables, for instance, to recognise places where non-condensable gases are concentrated. By describing with sufficient precision thermodynamic processes taking place in the vicinity of the heat transfer area segment, it is possible to determine the distributions of thermodynamic parameters on the boundaries between successive layers. The obtained results allow for the recognition of processes which contribute in varying degrees to irreversible energy degradation during steam condensation in various parts of the examined device.
Go to article

Abstract

Helical coil heat exchangers are widely used in a variety of industry applications such as refrigeration systems, process plants and heat recovery. In this study, the effect of Reynolds number and the operating temperature on heat transfer coefficients and pressure drop for laminar flow conditions was investigated. Experiments were carried out in a shell and tube heat exchanger with a copper coiled pipe (4 mm ID, length of 1.7 m and coil pitch of 7.5 mm) in the temperature range from 243 to 273 K. Air – propan-2-ol vapor mixture and coolant (methylsilicone oil) flowed inside and around the coil, respectively. The fluid flow in the shell-side was kept constant, while in the coil it was varied from 6.6 to 26.6 m/s (the Reynolds number below the critical value of 7600). Results showed that the helical pipe provided higher heat transfer performance than a straight pipe with the same dimensions. The convective coefficients were determined using theWilson method. The values for the coiled pipe were in the range of 3–40 W/m2 ·K. They increased with increasing the gas flow rate and decreasing the coolant temperature.
Go to article

This page uses 'cookies'. Learn more